SFB TRR 352 Mathematics of Many-Body Quantum Systems and Their Collective Phenomena
print

Links and Functions

Breadcrumb Navigation


Content

15.07.2024

Alexander Drewitz: Branching Brownian motion, branching random walks, and the Fisher-KPP equation in spatially random environment

Branching Brownian motion, branching random walks, and the F-KPP equation have been the subject of intensive research during the last couple of decades. By means of Feynman-Kac and McKean formulas, the understanding of the maximal particles of the former two Markov processes is related to insights into the position of the front of the solution to the F-KPP equation. We will discuss some recent result on extensions of the above models to spatially random branching rates and random nonlinearities. Interestingly, the introduction of such inhomogeneities leads to a richer and much more nuanced picture when compared to the homogeneous setting.

Matthias Löwe: Fluctuations in the dilute Curie-Weiss model

The dilute Curie-Weiss model is the Ising model on a (dense) Erdös-Rényi graph G(N,p). It was introduced by Bovier and Gayrard in 1990s. There the authors showed that on the level of laws of large numbers the magnetization as well as the free energy behave as they do in the usual Curie-Weiss model (i.e. mean-field Ising model). We analyze CLTs for the these quantities and give several critical values for p at which these fluctuations change. This is joint work with Zakhar Kabluchko and Kristina Schubert.