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Problem: Long-range interacting spin systems

We consider D particles undergoing Markovian open quantum dynamics. The state of

the system is described by a (vectorized) density matrix ρ(t) and evolves through

ρ̇(t) = L[ρ(t)] ∶= −i[H, ρ(t)] + D[ρ(t)],

where

H = Ω
D

∑
k=1

σ
(k)
x +∆

D

∑
k=1

n(k) + ∑
k≠h

V

∣k − h∣α
n(k)n(h)

D[ρ] = γ
D

∑
k=1

(J(k)ρJ(k),∗ −
1

2
(ρJ(k),∗J(k) + J(k),∗J(k)ρ)) .

Here

σx = (
0 1

1 0
) ,n = (

1 0

0 0
) , J = (

0 0

1 0
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Memory requirement full problem:

D = 8→ 500KB
D = 16→ 34GB
D = 32→ 147EB(= exabytes)



Problem: Long-range interacting spin systems

Consider a general tensor di�erential equation

Ȧ(t) = F (t,A(t)), A(t0) = A0.

For example F = L from the slide before.

Problem: Dimension of the Hilbertspace grows exponentially with the number of

particles 2D (closed) or 4D (open).

Idea: Project the equation to a low-dimensional manifoldM. I.e. solve

Ẏ (t) = P(Y )F (t,Y (t)), Y (t0) = Y0 ∈ M.



Dynamical low rank approximation

On a manifoldM we impose the time-dependent Dirac-Frenkel variational principle.

We determine X = X (t) such that its derivative Ẋ , which lies in TXM, satis�es

Ẋ ∈ TXM such that ⟨Ẋ − F [X ],Y ⟩ = 0 ∀Y ∈ TXM.

M

TXM

uX

F [X ]

P(u)F [X ]

O. Koch, Ch. Lubich, SIAM J. Matrix Anal. Appl. 31:2360-2375, 2010.

Ch. Lubich, From quantum to classical molecular dynamics, EMS 2008.



Dynamical low rank approximation

Consider �rst the simplest (matrix) case: LetM be the manifold of matrices of rank r .
A low-rank decomposition of A ∈ M corresponds to the singular value decomposition of

a matrix A ∈ Rn×m:

A = USV ⊺

The memory footprints reduces from nm to nr +mr + r2.

→Idea: Keep the decomposed structure over the time integration!



Dynamical low rank approximation

Make the ansatz ψ(t) = U(t)S(t)V (t)⊺. Inserting this in the Dirac-Frenkel variational

principle,

⟨ψ̇(t) − F (ψ(t)),Y ⟩ = 0 ∀Y ∈ TψM,

we obtain.

Equation of motion for the factors:

U̇(t) = (I −U(t)U(t)⊺)F (ψ(t))V (t)S(t)−1

Ṡ(t) = U(t)⊺F (ψ(t))V (t)

V̇ (t) = (I −V (t)V (t)⊺)F (ψ(t))U(t)S(t)−⊺

O. Koch, Ch. Lubich, SIAM J. Matrix Anal. Appl. 29 (2007), 434-454.
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Problem: The inverses of S(t) can
get close to singular i.e. we have a

high curvature of the manifold.
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Robust time integration

We see that we need robust time integration schemes which are insensitive in the

presence of small singular values. Several methods have been derived in the last years:

� Projector splitting integrator

� Basis update Galerkin (BUG)

� Rank-adaptive BUG

� Parallel BUG

Ch. Lubich, I. Oseledets, BIT 54 (2014), 171-188

G. Ceruti, Ch. Lubich, BIT Numer. Math. 62 (2022), 23-44

G. Ceruti, J. Kusch, Ch. Lubich, BIT Numer. Math. 62 (2022), 1149-1174

G. Ceruti, J. Kusch, Ch. Lubich, arXiv2304.05660 April 2023



BUG: Basis update and Galerkin

Input: U0 ∈ Rn×r ,V0 ∈ Rm×r and S0 ∈ Rr×r .

Basis update: We solve the small matrix di�erential equations:

K̇(t) = F (t,K(t)V ⊺

0 )V0, K(t0) = U0S0

L̇(t) = F (t,U0L(t)
⊺
)U0, L(t0) = V0S

⊺

0 .

De�ne U1 = orth(K(t1)) and V1 = orth(L(t1)).
Galerkin step: Solve the r × r di�erential equation

Ṡ(t) = U⊺

1F (t,U1S(t)V
⊺

1 )V1, S(t0) = S0.

De�ne S1 = S(t1).
Output: Approximation at new time step t1 is now U1S1V

⊺

1 .



BUG: Basis update and Galerkin

Advantages:

� The integration keeps the decomposed form. → No need to compute the full

matrix at any time.

� Curvature of the manifold is not seen on (�at) subspaces U(t)S(t)V ⊺

0 ,

U0S(t)V (t)⊺ and U1S(t)V
⊺

1 .

Text



Tree tensor networks

Tree tensor networks (TTNs) are the natural generalization of matrices to

high-dimensional tensors. A TTN is a hierarchical data sparse format to store

high-order tensors. Uτ on the lowest level is a basis matrix and on higher levels it is

de�ned recursively by

Xτ = Cτ
m

⨉
i=1

Uτi

Uτ =Mati(Xτ)
⊺. n1 n2 n3 n4

Note: Matrices are also TTNs via

A = USV ⊺
= S ×1 U ×2 V . n1 n2



Tree tensor networks

We are now working on the manifold of TTNs with ranks (rτ)τ≤τ̄ .

n1 n2 n1 n2 n3 n4 n5 n1 n2

. . .

nd−1 nd

Figure: Di�erent examples for TTN's (from left to right): Matrix, general TTN, matrix product
state/tensor train.

The red balls encode a connecting tensor of matching order, which was the S matrix in

the matrix case. The nodes nl encode the basis matrices, which correspond to U and V .



(Rank-adaptive) BUG-integrator for tree tensor networks

Suppose we have a TTN Xτ̄ . We upload the sub-

trees of Xτ̄ recursively with the sub�ows Φ
(i)
τ and

the cores with the sub�ow Ψτ . For the sub�ow Φ
(i)
τ

there are two cases:

� The ith subtree is a leaf. Then Φ
(i)
τ solves a

small matrix ODE.

� The ith subtree is again a TTN. Then we

apply the algorithm recursively to this smaller

tree.

τ1 τ2

G. Ceruti, Ch. Lubich, D.S., SIAM Journal on Numerical Analysis 61 (1), 194-222



(Rank-adaptive) BUG-integrator for tree tensor networks

Now all subtrees of τ1 are leaves. We update the leaves by solving a small matrix ODE

for one time step. The solution at time δt is taken as the updated leaf.

τ1
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(Rank-adaptive) BUG-integrator for tree tensor networks

Now we need to update the connecting tensor C 0
τ1 by the sub�ow Ψτi . This is done by

solving a small tensor ODE for one time step in the new basis. The solution at time δt
is taken as the new connecting tensor C 1

τ1 .
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(Rank-adaptive) BUG-integrator for tree tensor networks

Remain to update the 0-dimension of Cτ1 by an orthogonalization in the corresponding

mode.

τ1 τ2
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(Rank-adaptive) BUG-integrator for tree tensor networks

And update the last root tensor Cτ by the procedure Ψτ , which we have seen before.

τ1 τ2



Properties

BUG integrator:

� Let A(t) be the exact and X n
τ̄ the numerical solution at time t0 + nh. Further let

Fτ̄ be Lipschitz continuous and bounded. Suppose that

∣∣(I − P(Y ))Fτ̄(t,Y )∣∣ ≤ ε ∀Y ∈ M in a neighborhood of A(tn), where P(Y )

denotes the projection onto TYM. Then it holds

∣∣A(tn) −X n
τ̄ ∣∣ = O(h + ε),

independent of the singular values.

Rank-adaptive BUG integrator:

� If Fτ̄ satis�es Re⟨Y ,Fτ̄(t,Y )⟩ = 0 ∀Y and ϑ is the truncation tolerance it holds

∣∣∣X 1
τ̄ ∣∣ − ∣∣X 0

τ̄ ∣∣∣ ≤ cτ̄ϑ.

� Consider the tensor Schrödinger equation and let E(Y ) = ⟨Y ,H[Y ]⟩. Then it

holds for every step size h

∣E(X 1
τ̄ ) − E(X 0

τ̄ )∣ ≤ cτ̄ϑ∣∣H[X 1
τ̄ + X̂ 1

τ̄ ]∣∣.
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Application to long-range open quantum systems

We see that the integrator almost exactly coincides with the expected results (left).

Further, we observe that for α = 0 we indeed converge to the mean-�eld limit (which is

known to have a phase transition) when increasing the number of particles.

D.S, Ch. Lubich, G. Ceruti, I. Lesanovsky, F. Carollo, arXiv:2304.06075 2023



Application to long-range open quantum systems

Of physical interest is whether we observe a phase transition persists for other values of

α than zero. The plot above (all curves for D = 16) indicates that the phase transition

indeed persists as α < 1.

D.S, Ch. Lubich, G. Ceruti, I. Lesanovsky, F. Carollo, arXiv:2304.06075 2023



Current work

� Use di�erent tree structures than binary trees → better approximation properties?

n12 n34 n56 n78 →
n1 n2 n3 n4 n5 n6 n7 n8

� Generalize the parallel BUG to TTNs. → rougher but faster time integration.

� Apply tree tensor network integrators to 2-D problems.



Thanks for your attention!
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