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Computing the spectrum of different linear operators is
important across physics

Algorithms which provide rigorous error control are
preferable and used for computer proofs in math

We develop algorithms to compute the spectrum with error
control for infinite-volume operators with finite local
complexity
Image source: https://physicsworld.com/a/science-and-the-stradivarius/ 2



Error control for matrix eigenvalues

Consider a matrix like

A =

 1.5 −1 −0.5
−1 3 −1.5
−0.5 −1.5 2


If you just call eigh in Python or Matlab, you get

Spec(A) ≈ {−3.64958989, 1.6742044, 2.47538548} .

But what is the precision of this approximation, how many
digits are significant? With interval arithmetic, we would instead
get something like

Spec(A) ⊆ (−3.7,−3.6) ∪ (1.6, 1.7) ∪ (2.4, 2.5)

This is also known as validated numerics.
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Error control for finite-dimensional eigenvalue
computations

Most eigenvalue algorithms are iterative (power iteration,
Lanczos, Arnoldi, . . .)

How many steps should we iterate until we have a good
enough approximation of the eigenvalues and eigenbasis?

Solution by Yamamoto (1980, 1981) using interval arithmetic
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Error control for continuous systems

If instead of a matrix we have
a differential operator, the
problem of discretization
needs to be solved additionally

For general infinite-dimensional systems, the Rayleigh–Ritz
method can be used to get an upper bound on eigenvalues:

λ1 ≤
∥Hv∥
∥v∥

, λ2 ≤ · · ·

Obtaining lower bounds on eigenvalues is usually much more
involved – see Kato 1949, Weyl 1950, Bazley and Fox 1961.
There are even integrated FE methods (Carstensen 2014, . . .)
Image source: http://www.violin-analysis.com/
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Spectral computations for infinite-volume systems

Instead of continuous systems, we will consider discrete
operators on infinite domains – for example, the tight-binding
approximation for an electron in a material.

Similar to the continuous case, we provide error control to the
usually ad-hoc methods of reducing these systems to
finite-dimensional parts
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What kind of systems will we consider?

We consider tight binding models (discrete Hamiltonians) H
on a discrete subset Γ ⊆ Rn.

That is, we assume that H is a bounded operator on a Hilbert
space H with a basis (ei)i∈Γ indexed by Γ.

Furthermore, we assume that the operator has short range,
that is, its matrix entries Hxy decay like

|Hxy| ≤ C
1

d(x, y)n+ε

for some C, ε > 0.

In addition, we will require finite local complexity – more on
that later.
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What do physicists usually do?

One can obviously not pass infinite matrices into Numpy’s
eigh. . . Therefore physicists often just cut off to produce a
finite-dimensional matrix and approximate the spectrum

However, this approach can lead to wrong results due to
edge states
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Periodic and aperiodic infinite-volume systems

[
For periodic Hamiltonians, the spectrum can be computed
using the Bloch-Floquet transform (Bloch 1928).

But for aperiodic systems, there are no universal methods to
compute the spectrum of infinite-volume systems.
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2D quasicrystals edge state example
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Error control using periodic approximants

One of the most highly developed approaches towards error
control is to approximate H by a periodic operator Hper so that
local patches in approximate one-to-one correspondence
(Beckus and Bellissard 2016, Beckus and Takase 2021, . . .)

For this case, there exist statements of the form

dH

 ∪
x∈X1

σ(Ax1),
∪

x2∈X2

σ(Ax2)

 ≤ CdH(X1, X2)
α ,

for some dynamical systems X1 and X2.

Problem: periodic approximations cannot always be found.
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Question
Can you think of a simple sy-
stem with finite local complexi-
ty that cannot be approximated
periodically?
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Question
Can you think of a simple sy-
stem with finite local complexi-
ty that cannot be approximated
periodically?

Answer
The string (or 0/1-valued potential)

. . . 000000000111111111 . . .

has subwords 0∗1∗, but any periodic approximant must also
have the patch 10 if it has 01.
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The method of uneven sections

Let H be a discrete operator with finite range m for simplicity.

If we compute the spectrum of 1BL(x)H1BL(x), the Dirichlet
boundary conditions introduce possibly large errors in the
spectrum (spectral pollution)
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The method of uneven sections

Let H be a discrete operator with finite range m for simplicity.

If we compute the spectrum of 1BL(x)H1BL(x), the Dirichlet
boundary conditions introduce possibly large errors in the
spectrum (spectral pollution)

Solution of Colbrook, Roman, Hansen (2020): Compute the
smallest singular value of

1BL+m(x)(H − λ)1BL(x)

for a set of λ ∈ C. We will denote this as εL,λ,x. If v ∈ HBL(x) is
the corresponding singular vector, then v is an
εL,λ,x-quasimode of the infinite-volume H, and thus

d(λ, Spec(H)) ≤ εL,λ,x

for H self-adjoint. Thus, spectrum of H is guaranteed!
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Advantages of uneven sections
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• Easy to compute

• Converges quickly in practice

• Requires no spatial structure
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Limitations of uneven sections – no-go theorem

The upper bound

d(λ, Spec(H)) ≤ εL,λ,x

is only a one-sided bound

Actually, Colbrook et al. provided a no-go theorem, saying that
it is impossible to computationally bound d(λ, Spec(H)) from
below for general operators.

Their proof is very simple: the operators

I1 =


2 0 0 · · ·
0 1 0 · · ·
0 0 1
... . . .

 , I2 =


1 0 0 · · ·
0 2 0 · · ·
0 0 1
... . . .

 , etc.

cannot all be distinguished from 1 by looking at finitely many
elements, but the spectra are {1, 2} and {1}.
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Circumventing the no-go theorem

The no-go theorem is so simple that is even works for infinite
diagonal matrices!

I would argue that the no-go theorem says more about the
statement of the problem than about the actual difficulty of
spectral computation.

It has been suggested by Colbrook, Hansen (2021) that adding
structure can improve computability. This is just what we do
here: we add the structure of finite local complexity (flc)
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Finite local complexity

For discrete operators, we say that H has equivalent action on
BL(x) and BL(x+ t) if

BL(x+ t) ∩ Γ = (BL(x) ∩ Γ) + t

and for all a1, a2 ∈ BL(x) ∩ Γ, we have

Ha1+t,a2+t = Ha1a2

up to a pointwise phase modification.

We say H has finite local complexity if there are finitely many
x1, . . . , xN ∈ Rn such that for any y ∈ Rn, there is a
k ∈ {1, . . . , N} such that H has equivalent action on BL(y) and
BL(xk).

19



Detectability of infinite volume spectrum

Question: Is the spectrum a “local” property or can it depend on
the large scale structure of the Hamiltonian?

We show that a fixed window size is sufficient to detect any
spectrum of the infinite-volume operator.

(Similar result: Beckus, Takase 2021, Lemma 3.1)
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Detectability of infinite volume spectrum

Theorem 1 Let n ∈ N, Γ ⊆ Rn a countable set, and H a
discrete operator on Γ with finite range m > 0. Then for every
λ ∈ C and L > m it holds that

d(λ, Spec(H)) ≥ εL,λ
√
1− δ − ∥H − λ∥

√
δ , (1)

where

εL,λ := inf
x∈Rn

εL,λ,x (2)

and

δ :=
n

⌈L/m− 1⌉
. (3)

21



Proof Idea 1: Lage mass in the „rim“

If d(λ, Spec(H)) = ρ, we can find a ρ-quasimode (approximate
eigenstate) ψ, in the infinite-volume system. If the restricton
ψ1BL(x) is a quasimode of H, then we can bound εL,λ,x.

Actually, ψ1BL(x) will be a quasimode if ∥ψ∥BL+m(x)\BL−m(x) is
small. That is, the only way ψ1BL(x) might not be a quasimode
is if a large fraction of the ℓ2 mass is in the „rim“.
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Proof Notion 2: Multiple overlapping coverings

We construct a grid of squares. If the mass in the edges is
small in any grid, this is sufficient

A3

BL(x1) BL(x2) BL(x3)

BL(x4) BL(x5) BL(x6)

BL(x7) BL(x8) BL(x9)
A2

A3

A1

By constructing multiple overlapping grids, we can cover the
edges of one covering with the interiors of another
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Proof Notion 3: The mass cannot be in the edges for
all the coverings
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Computability of the flc spectral problem

We use a notion of computability from Colbrook and Hansen
(2021), together with the notion of Blum-Shub-Smale
algorithms (like Turing machine with real numbers)

Colbroo and Hansen defined the computational problem using
the matrix entries as evaluation functions and showed that it is
not solvable with error control from this data

We show that by adding the very general notion of finite local
complexity, the problem becomes solvable with error
control

We show lower solvability complexity index (SCI, ≈ number of
limits needed) with flc than in general
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Application: Quasicrystals

Have you every seen a five-pointed snowflake or other crystal
with fivefold symmetry?

Using lattice theory, one can show that only 2-, 3-, 4- and 6-fold
symmetries are possible. This is known as crystallographic
restriction (Kepler 1611).

But crystals with fivefold symmetries exist! (Shechtman 1984)
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Discovery of quasicrystals (nonperiodic crystals)

“Forbidden” symmetries were unexpectedly discovered in
artificial crystals by Dan Schechtman in 1982
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Images of quasicrystals

Ho-Mg-Zn dodecahedral quasicrystal
Standing water wave quasicrystal

(https://commons.wikimedia.org/wiki/File:Ho-Mg-ZnQuasicrystal.jpg) (https://doi.org/10.1103/PhysRevE.47.R788)
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The math behind quasicrystals

Quasicrystals have a strong long-distance structure without
being periodic

The mathematical theory is given by self-similar aperiodic
tilings, such as the famous Penrose tilings (i.e., math
predates physics!)
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Spectra of quasicrystals

The spectra of quasicrystalline operators have gaps just like
periodic ones, but are often fractal.

One of the first studies was Kohmoto (1983), „Mapping and
Escape“
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Spectra of quasicrystals

The spectra of quasicrystalline operators have gaps just like
periodic ones, but are often fractal.

One of the first studies was Kohmoto (1983), „Mapping and
Escape“
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Computing spectral gaps in quasicrystals

Quasicrystals are a great class to study because they have low
local complexity (few patches)

The previously described approach converges slowly, the
size of the patches growing like 1/ε, where ε is the required
precision.

For practically computing the spectral gaps, we have developed
a method based on Dirichlet boundary conditions which
converges more quickly

Normally, Dirichlet bc introduce possibly many edge states. We
formulate an edge state criterion to distinguish edge states
from bulk states
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Edge state criterion

We define an edge state criterion to distinguish edge states
from bulk states among the eigenvectors of 1BL(x)H1BL(x).
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The edge state criterion is simply based on the ℓ2 mass in a
certain distance from the edge.
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Dirichlet based gap detection

Definition 2 Let ε, L > 0 and λ ∈ R. We say that a Hamiltonian
H is locally ε-bulk-gapped at energy λ and scale L if there
exist constants N ∈ N, N ≥ 2, and C < 1/Nd such that for any
x ∈ Γ and any ψ ∈ ℓ2(Γ;H) we have the following implication:
Whenever

∥(H − λ)ψ∥BL(x) ≤ ε∥ψ∥BL(x) , (4)

then for l := L+r
N + r it holds that

∥ψ∥2
Bl(x)

≤ C∥ψ∥2BL(x)
. (5)

Theorem 3 If a Hamiltonian H on ℓ2(Γ;H) is locally
ε-bulk-gapped at energy λ on some scale L > 0, then the
interval (λ− ε, λ+ ε) is a gap in the spectrum of H, that is,
σ(H) ∩ (λ− ε, λ+ ε) = ∅.
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Resolvent criterion for ε-bulk-gappedness

Proposition 4 Let L > 0, N ∈ N, N ≥ 2, l := L+r
N + r, and

λ ∈ R. Assume that for every x ∈ Γ, we have

D(x) := ∥1Bl(x)
(HBL−m(x) − λ)−11BL−m(x)H1BL(x)\BL−m(x)∥ < N−d/2

Then H is locally ε-bulk-gapped at energy λ and scale L for
any ε > 0 with

ε < inf
x∈Γ

N−d/2 −D(x)

∥1Bl(x)
(HBL−m(x) − λ)−11BL−m(x)∥op

. (6)

This means that spectral gaps can be checked using the
resolvent only, which is much more efficient and can be done
using sparse numerics.
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Application to quasicrystals: enumerating local
patches

We enumerate local patches using the cut-and-project method.

Decomposition of “acceptance region” to enumerate patches 37



Quasicrystal results – Fibonacci
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Quasicrystal results – Ammann-Beenker
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Quasicrystal results – Ammann-Beenker
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Extension – the pseudospectrum

For non-self-adjoint operators, computing the spectrum is not
continuous function. Thus, the spectrum of non-self-adjoint
operators is not computable.

A different measure for non-self-adjoint operators is the
ε-pseudospectrum.

Specε(H) =
{
λ ∈ C | | ∥(H − λ)−1∥ ≥ ε−1

}
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The pseudospectrum
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Upper and lower bounds on the pseudospectral
radius

Hψ(n) = −ψ(n− 1) + (1 + i)F (n)ψ(n)− ψ(n+ 1)

Pseudospectrum
is computable
with error control in
Hausdorff distance
for non-self-adjoint
operators
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