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Macroscopic thermal equilibrium

Let H be a finite dimensional Hilbert space, Heq ⊂ H a sub-

space defining thermal equilibrium, and Peq the orthogonal projection

onto Heq. It is said that a pure state ψ ∈ S(H) is in

macroscopic thermal equilibrium (MATE), if for some ε � 1
ψ ∈ MATEε := {ψ ∈ S(H) | ‖Peqψ‖2 ≥ 1 − ε} .

Example: For a system of particles in a box, one should think of H as

a micro-canonical energy subspace H = χ[E−∆,E](H), where H is the

Hamiltonian of the system and ∆ > 0 is small but still large enough

so that dimH is huge. A natural choice for Heq would be a subspace

of states ψ for which the coarse-grained position distribution is close

to uniform (see below) and the coarse-grained momentum distribu-

tion is close to Maxwellian with the appropriate temperature. See

Figure 1 for a screenshot of a simulation that illustrates the corre-

sponding classical situation.

ETH and approach to MATE

We say that a Hamiltonian H satisfies the

eigenstate thermalization hypothesis (ETH), if

∀ normalized eigenvector φ of H : φ ∈ MATEε .

Theorem 1 [1]: Let H satisfies the ETH. Then for every ψ0 ∈ S(H)
and (1 −

√
ε)-most t ∈ [0,∞)

ψt ∈ MATE√
ε .

I.e., all initial states ψ0 eventually evolve into MATE√
ε and stay there

for most of the time. In short, we say that all initial states thermalize.

Problem of high degeneracies

LetDE be the maximal degeneracy of a HamiltonianH0. If one eigen-

basis (φα)α of H0 satisfies the ETH, then any normalized eigenvector

φ of H0 satisfies

φ ∈ MATEεDE

and this bound can not be improved in general. Hence, for highly

degenerate Hamiltonians ETH for one eigenbasis does not imply ETH

for all eigenvectors. This is, e.g., the case for the free Fermi gas,

where DE ≥ 2dN .

Small perturbations of degenerate Hamiltonians

Theorem 2 [1]: Assume that H0 has an eigenbasis (φα)α that satis-
fies the ETH for some ε > 0, i.e.

∀α : φα ∈ MATEε.

Let V be a self-adjoint perturbation drawn randomly from a continu-

ous distribution that is invariant under conjugation with all unitaries

commuting with H0 and let for λ ∈ R
H := H0 + λV .

Finally, let Hν ⊂ H be any subspace (e.g. a subspace associated

with a macroscopic non-equilibrium state).

Then for all δ, δ′δ′′ > 0 there exists λ0 > 0 such that for all λ ∈ (0, λ0)
and for (1 − δ)-most V , (1 − δ′)-most ψ0 ∈ S(Hν) are such that for

(1 − δ′′)-most t ∈ [0,∞)
ψt := e−iHtψ0 ∈ MATEε′

with

ε′ = 3ε
δδ′δ′′ .

Note that H has non-degenerate eigenvalues with probability one,

but its eigenbasis need not satisfy the ETH.

Figure 1. Classical gas in macroscopic thermal equilibrium

Applications

Free fermions in a box

Consider the free Fermi gas of N particles on a d-dimensional lattice

Λ = {1, . . . , L}d with periodic boundary conditions, i.e.

H0 = −
∑
x,y∈Λ

dist(x,y)=1

c∗
xcy

restricted to the N -particle sector of Fock space.

For Γ ⊂ Λ (e.g. one half of the box) let

NΓ :=
∑
x∈Γ

c∗
xcx ,

µ := |Γ|
|Λ|, and define for some α > 0

Peq := χ[µ−α,µ+α](NΓ/N) .

For d = 1 we show [1] that H0 satisfies the ETH with

ε = 32 lnN
α2N

.

Thus, by Theorem 1, for large N all initial states “thermalize” in the

sense that for most times ψt := e−iH0tψ0 displays a homogeneous

coarse grained distribution in space.

For d ≥ 1 we show [1] (based on a result by Tasaki for d = 1 [2]) that

there exists one eigenbasis (Slater-determinants of one-body eigen-

functions) for which the ETH is satisfied with

ε = 2e− α2
3µ(1−µ)N .

Thus, by Theorem 2, for most small perturbations V most initial states

(even when conditioned on a small non-equilibrium subspace) “ther-

malize” in the sense that for most times ψt := e−i(H0+V )tψ0 displays a

homogeneous coarse grained distribution in position space.

2d Ising model

Tasaki [3] applied our Theorem 2 to the Ising model in d = 2 below

the critical temperature to prove that for all initial states in an ap-

propriate energy shell most of the time (under perturbed evolution)

the magnetization density is close to the equilibrium value, i.e. to the

spontaneous magnetization given by the microcanonical expectation

value. In this example it is explicit that some but not all eigenstates

satisfy the ETH.
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