The complexity of approximate
Gottesman-Kitaev-Preskill states

Lukas Brenner Libor Caha

Xavier Coiteux-Roy Robert Konig

School of Computation, Information and Technology, Technical University of Munich
Munich Center for Quantum Science and Technology

Setting

Goal: Prepare a bosonic state close in L!-distance to a target state |U,..;) € L*(R).
Allowed operations:

a) Preparation of the vacuum state |vac) and of the single qubit state |0).
b) Single- and two-qubit unitaries

c) Gaussian one-and two-mode unitaries of bounded strength
)
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(d) (Qubit-controlled) single-mode phase space displacements of bounded
strength

(e) Homodyne measurements and qubit measurements in the computational basis

Complexity of a bosonic state
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We consider state preparation protocols with initial state | V) = \vac>®<m“) ® 10)
2.1 Unitary state preparation: Given ¢ > 0 we consider a unitary U composed
of gates from (b)-(d) acting on the staten|V) such that
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2.2 Heralded state preparation: Given ¢ > 0 and p € (0, 1], we consider proto-

cols of the following form:

(i) Apply a unitary U composed of gates from (b)-(d) on | V).

(i) Measure the m auxiliary modes and m’ qubits.

(i) Depending on the measurement outcome, accept or reject.
(iv) Conditioned on acceptance apply a (mmt. dep.) displacement on the first
mode.

Assume the protocol accepts with probability at least p and the average state
upon acceptance p,.. satisfies

Hpacc o ’\Ijtarget> <\ptarget‘ Hl <e.

We define the unitary state complexity C:(|V....;)) and the heralded state com-
plexity C:'*"(|Wy..)), respectively, as the minimal number of operations needed
to prepare a state which is e-close in L'-distance to |W, .t )-

Approximate GKP states
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Gottesman-Kitaev-Preskill (GKP) states [2] are bosonic states first introduced in
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the context of quantum fault-tolerance. They act as a substrate to protect quan-
tum information from phase space displacement noise. The ideal but unphysical
GKP state is defined as the state stabilzed by the unitaries Sp = e’ and Sy = *™¢.
Formally, it is represented in position space as
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We are interested in approximate GKP states defined as
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Efficient GKP state preparation

We present a heralded protocol that prepares an L'-norm approximation of
|GKP,; ). It proceeds in two steps:

() Comb state preparation The comb state I1I; A(z) o< Y7/ e A s

prepared by repeated application of the unitary V, in total n = O(log 1/k)-times,

— S(_ log 2) r— e—’iP — e’iﬂ'Q p—
T l l
—_ H

which doubles the peaks with each application.
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(I Envelope Gaussification A squeezed vacuum state |n,.) = S(log k) |vac) with
variance 2 equips the comb state with a Gaussian envelope. Upon
measuring x in an acceptance region, a classically controlled shift correction is
applied.

lvac) — S(log k) —

Q

A

e—iPl Q2

‘(I)) —_— F————] ciround(z) P |— ‘(I)(@)

Theorem 1 ([1])

Let k, A > 0 sufficiently small. The heralded state preparation protocol described
above prepares with probability at least Pr|success| > 1/10 a quantum state p such
that

[p — |GKP ) (GKPalll, < O(VA) + O(x'?)

using O(log1/A + log 1/k) operations from (a)-(e).
In particular, there is a polynomial ¢(x, A) such that

f/m,g(ﬁ,A)(\GKP,@A)) < Ologl/k+1logl/A) for (k,A)— (0,0).

The full circuit of the GKP state preparation protocol looks as follows
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Lower bounds on the complexity

We also prove lower bounds on the unitary and heralded state complexity of
IGKP,A).

Theorem 2 ([1])

Let k, A > 0. Then there is a polynomial p(x, A) with p(0,0) = 0 such that

Ci(|GKP,a)) = 2log1/k +log 1/A)
CHr (IGKP,A)) > Q(log1/k +log1/A)  for (k,A) — (0,0),

p,3p/2

whenever p > p(k, A).

Idea: The unitaries from (b)-(d) are moment limited. Thus, the energy after apply-
INng a circuit can grow at most exponentially in the circuit depth. This lower bounds
the projection II,_r i (ﬁ[_R,R]) of the output state in position (momentum) space.
We infer that the distance to |GKP, ») is lower bounded depending on the circuit

depth.
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