

The complexity of approximate **Gottesman-Kitaev-Preskill states**

Libor Caha Xavier Coiteux-Roy Lukas Brenner Robert König

School of Computation, Information and Technology, Technical University of Munich Munich Center for Quantum Science and Technology

Setting

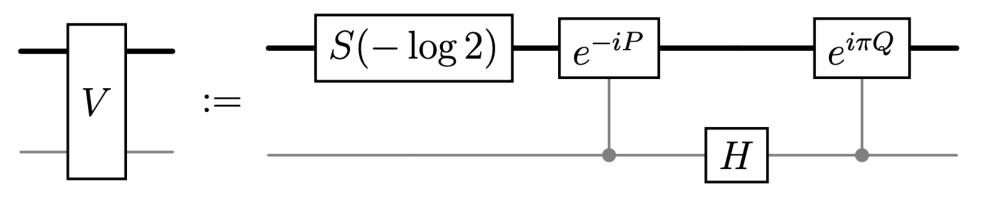
Goal: Prepare a bosonic state close in L^1 -distance to a target state $|\Psi_{\text{target}}\rangle \in L^2(\mathbb{R})$. Allowed operations:

- (a) Preparation of the vacuum state $|v_{ac}\rangle$ and of the single qubit state $|0\rangle$.
- (b) Single- and two-qubit unitaries
- (c) Gaussian one-and two-mode unitaries of bounded strength
- (d) (Qubit-controlled) single-mode phase space displacements of bounded strength
- (e) Homodyne measurements and qubit measurements in the computational basis

Efficient GKP state preparation

We present a heralded protocol that prepares an L^1 -norm approximation of $|\mathsf{GKP}_{\kappa,\Delta}\rangle$. It proceeds in two steps:

(I) Comb state preparation The comb state $ext{III}_{L,\Delta}(x) \propto \sum_{z=-L/2}^{L/2-1} e^{-(x-z)^2/(2\Delta^2)}$ is prepared by repeated application of the unitary V, in total $n = O(\log 1/\kappa)$ -times,



which doubles the peaks with each application.

Complexity of a bosonic state

We consider state preparation protocols with initial state $|\Psi\rangle = |vac\rangle^{\otimes (m+1)} \otimes |0\rangle^{\otimes m'}$. **Unitary state preparation**: Given $\varepsilon > 0$ we consider a unitary U composed 2.1 of gates from (b)-(d) acting on the staten $|\Psi\rangle$ such that

 $\|\operatorname{tr}_{m,m'} U |\Psi\rangle \langle \Psi | U^{\dagger} - |\Psi_{\operatorname{target}}\rangle \langle \Psi_{\operatorname{target}} |\|_{1} \leq \varepsilon.$

Heralded state preparation: Given $\varepsilon > 0$ and $p \in (0, 1]$, we consider proto-2.2 cols of the following form:

(i) Apply a unitary U composed of gates from (b)-(d) on $|\Psi\rangle$.

(ii) Measure the m auxiliary modes and m' qubits.

(iii) Depending on the measurement outcome, accept or reject.

(iv) Conditioned on acceptance apply a (mmt. dep.) displacement on the first mode.

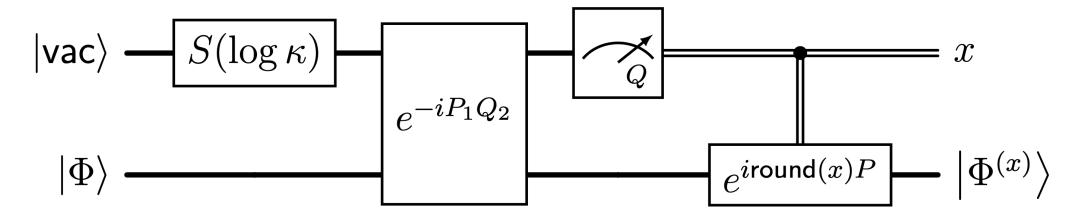
Assume the protocol accepts with probability at least p and the average state **upon acceptance** ρ_{acc} satisfies

 $\|\rho_{\mathsf{acc}} - |\Psi_{\mathrm{target}}\rangle\langle\Psi_{\mathrm{target}}\|\|_{1} \leq \varepsilon$.

We define the unitary state complexity $\mathcal{C}^*_{\varepsilon}(|\Psi_{\text{target}}\rangle)$ and the heralded state complexity $C_{p,\varepsilon}^{*,her}(|\Psi_{target}\rangle)$, respectively, as the minimal number of operations needed to prepare a state which is ε -close in L¹-distance to $|\Psi_{\text{target}}\rangle$.

$V(|\Pi_{L,\Delta}\rangle \otimes |+\rangle) \approx |\Pi_{2L,2\Delta}\rangle \otimes |+\rangle$

(II) Envelope Gaussification A squeezed vacuum state $|\eta_{\kappa}\rangle = S(\log \kappa) |v_{\alpha}\rangle$ with variance κ^{-2} equips the comb state with a Gaussian envelope. Upon measuring x in an acceptance region, a classically controlled shift correction is applied.



Theorem 1 ([1])

Let κ , $\Delta > 0$ sufficiently small. The heralded state preparation protocol described above prepares with probability at least Pr[success] > 1/10 a quantum state ρ such that

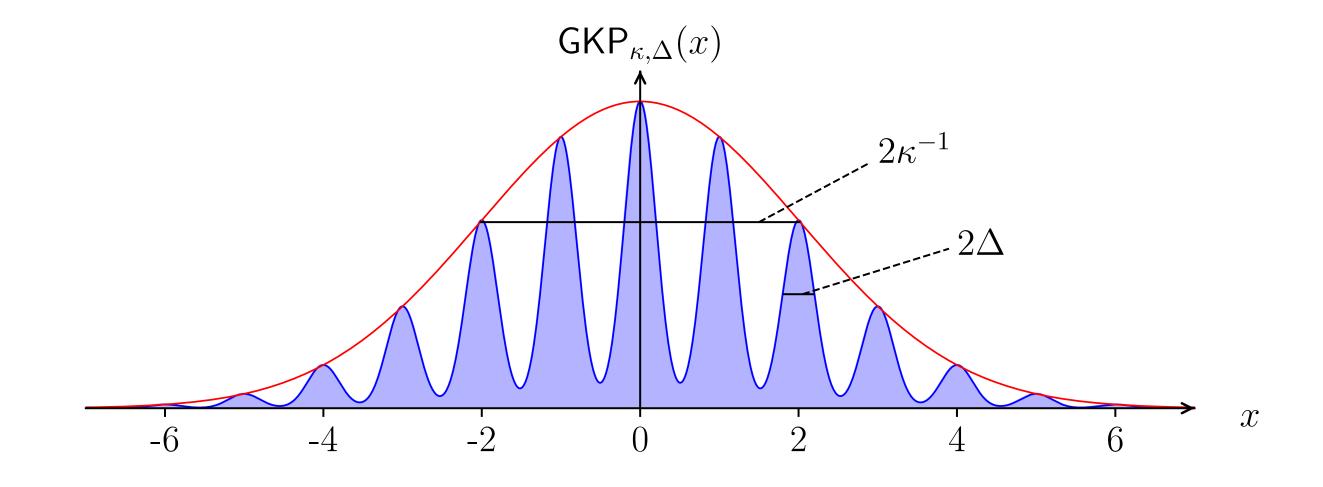
 $\|\rho - |\mathsf{GKP}_{\kappa,\Delta}\rangle\langle\mathsf{GKP}_{\kappa,\Delta}|\|_{1} \leq O(\sqrt{\Delta}) + O(\kappa^{1/3})$

using $O(\log 1/\Delta + \log 1/\kappa)$ operations from (a)-(e). In particular, there is a polynomial $\varepsilon(\kappa, \Delta)$ such that

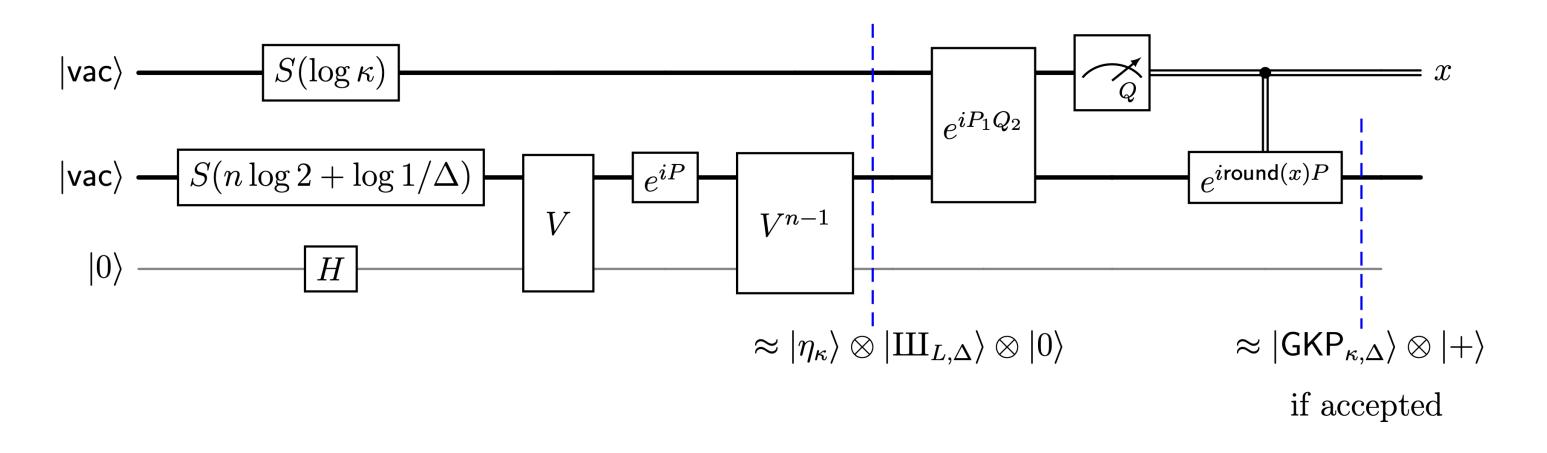
 $\mathcal{C}^*_{1/10,\varepsilon(\kappa,\Delta)}(|\mathsf{GKP}_{\kappa,\Delta}\rangle) \le O(\log 1/\kappa + \log 1/\Delta) \quad \text{for} \quad (\kappa,\Delta) \to (0,0) \,.$

The full circuit of the GKP state preparation protocol looks as follows

Approximate GKP states



Gottesman-Kitaev-Preskill (GKP) states [2] are bosonic states first introduced in the context of quantum fault-tolerance. They act as a substrate to protect quantum information from phase space displacement noise. The ideal but unphysical GKP state is defined as the state stabilzed by the unitaries $S_P = e^{-iP}$ and $S_Q = e^{2\pi iQ}$. Formally, it is represented in position space as



Lower bounds on the complexity

We also prove lower bounds on the unitary and heralded state complexity of $|\mathsf{GKP}_{\kappa,\Delta}\rangle.$

Theorem 2 ([1])

Let κ , $\Delta > 0$. Then there is a polynomial $p(\kappa, \Delta)$ with p(0, 0) = 0 such that

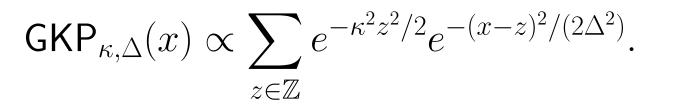
 $\mathcal{C}_1^*(|\mathsf{GKP}_{\kappa,\Delta}\rangle) \ge \Omega(\log 1/\kappa + \log 1/\Delta)$

 $\mathcal{C}_{p,3p/2}^{*,\mathsf{her}}(|\mathsf{GKP}_{\kappa,\Delta}\rangle) \ge \Omega(\log 1/\kappa + \log 1/\Delta) \quad \text{for} \quad (\kappa,\Delta) \to (0,0),$

whenever $p \ge p(\kappa, \Delta)$.

Idea: The unitaries from (b)-(d) are moment limited. Thus, the energy after applying a circuit can grow at most exponentially in the circuit depth. This lower bounds the projection $\Pi_{[-R,R]}$ ($\widehat{\Pi}_{[-R,R]}$) of the output state in position (momentum) space. We infer that the distance to $|GKP_{\kappa,\Delta}\rangle$ is lower bounded depending on the circuit depth.

We are interested in approximate GKP states defined as



References

- [1] L. Brenner, L. Caha, X. Coiteux-Roy, and R. Koenig. The complexity of approximate Gottesman-Kitaev-Preskill states, 2024. to appear.
- [2] Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator. Phys. Rev. A, 64:012310, Jun 2001.

SFB Retreat 2024

TRR 352 Mathematics of Many-Body Quantum Systems and Their Collective Phenomena