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N -particle Spin Systems

Consider the Hilbert space H = C2N , N � 1, of a system of N spin-1/2 particles, and a
Hamiltonian matrix H ∈ Herm (H) as for example the Heisenberg Hamiltonian:

H =
N∑

n,m=1
(Jx

nmσx
nσy

m + Jy
nmσy

nσy
m + Jz

nmσz
nσz

m) , (1)

with constants Jµ
n,m ∈ R such that Jµ

nn = 0 for all µ = x, y, z, m, n = 1, . . . , N and Pauli-µ
operators σµ

n acting on site n.

The quantum evolution of an observable Oinit ∈ Herm (H) is given by the von-Neumann
equation

Ȯ (t) = i [O (t) , H ] , O (t = 0) = Oinit (2)

Consider a density matrix ρ ∈ Herm (H) with ρ � 0, and tr ρ = 1. The expectation value
of O(t) with respect to ρ is

〈O (t)〉ρ := tr [O (t) ρ] . (3)

Numerical simulation of O(t): Challenging for N � 1.

Wigner Functions

Let N = 1 and S2 = {S = (Sx, Sy, Sz) ∈ R3 | ‖S‖2 = 1}. Following [1], we set Ω = S2 and
consider the map

∆ : Ω→ Herm (H) , ∆ (S) = 1
2 (1 + S · σ) ,

where σ = (σx, σy, σz). The Wigner function of an operator O ∈ Herm (H) is defined as

WO : Ω→ R, WO (S) = tr [O∆ (S)] .

Figure 1. Phase space description for a single spin system (N = 1).

Let N ≥ 1. Let Ω = (S2)×N and define the ∆-kernel and Wigner transforms as

∆N (S1, ...SN) =
N⊗

n=1
∆ (Sn) , WO (S1, ..., SN) = tr [O∆N (S1, ..., SN)] .

The expectation value 〈O〉ρ of an observables O wrt. a density matrix ρ satisfies

〈O〉ρ =
∫

Ω
WO (S1, ..., SN) Wρ (S1, ..., SN) dS.

B Ω ⊂ R3N with N � 1 requires high-dimensional numerical quadrature.

Weyl Calculus

Let A, B ∈ Herm (H) and define the star product ? such that WA ? WB := WAB. Based on
[1], one can show that for our choice of Ω,

WA?WB = WA

 N∏
n=1

(
1 +
←−
∇n ·

−→
∇n − (

←−
∇n · Sn)(Sn ·

−→
∇n)− i

←−
∇n · (Sn ×

−→
∇n)

)WB

where
←−
∇n and

−→
∇n act on WA and WB, respectively. The Moyal bracket

{WA, WB}? := WA ? WB −WB ? WA

can be expanded in terms of differentiation orders, {WA, WB}? =
∑N

k=1
{WA, WB}k. The

k-bracket has the form

{WA, WB}k = 2
∑
|n|=k

∑
|α|=|β|=k

Γ(n)
α,β (∂α

nWA)
(
∂β

nWB

)
,

Here, n ∈ {1, ..., N}×k with ni 6= nj, ∂α
n = ∂α1

n1
...∂αk

nk
and Γ(n)

α,β is a product of terms like

[Ini
]βi
αi

= δαiβi
−Sαi

ni
Sβi

ni
and [Kni

]βi
αi

= −iεαiγβi
Sγ

ni
, that contain an odd number of K-operators.

Semi-Classical Approximation of Dynamics

Wigner transforming both sides of eq. (2) gives

d

dt
WO = i{WO, WH}?. (4)

The first bracket {·, ·}1 induces a Poisson structure on Ω and a flow map Φt : Ω → Ω
defined by

d

dt
[Φt]µn = i {Sµ

n, WH }1|(S1,...SN)=Φt , Φ0 = 1. (5)

Using this to approximate the dynamics, expectation values evolve as:

〈O(t)〉ρ ≈ 〈O(t)〉(cl)ρ =
∫

Ω
WOinit

(
Φt(S)

)
Wρ(S) dS.

Two-body Interactions

If the Hamiltonian H ∈ Herm (H) contains only two-body interactions, then
{WA, WH}? = {WA, WH}1 + {WA, WH}2 with

{WA, WH}1 = 2
N∑

n=1
(∂µ

nWA) [Kn]νµ (∂ν
nWH) ,

{WA, WH}2 = 2
N∑

n1,n2=1
n1 6=n2

(
∂µ1

n1
∂µ2

n2
WA

) (
[In1]ν1

µ1
[Kn2]ν2

µ2
+ [Kn1]ν1

µ1
[In2]ν2

µ2

) (
∂ν1

n1
∂ν2

n2
WH

)
.

In this case, the error of the semi-classical approximation is given by (see also [2]):

〈O(t)〉ρ − 〈O(t)〉(cl)ρ =
∫

Ω

(∫ t

0
{WOinit

◦ Φτ , WH}2 ◦ Φt−τdτ

)
Wρ dS (6)

Example: Ising Model

The Ising model is a special case of eq. (1) where Jx
nm = 0 = Jy

nm. Using eq. (5) with

WH =
∑
nm

Jz
nmSz

nSz
m, the corresponding classical flow is:

[Φt(S1, ...SN)]µn =

Sx
n cos(2ωnt) + Sy

n sin(2ωnt), µ = x,
Sy

n cos(2ωnt)− Sx
n sin(2ωnt), µ = y,

Sz
n, µ = z.

with ωn =
∑

m

Jz
nmSz

m. If the initial state is ρ = (|+〉 〈+|)×N and Oinit = σx
n, then

〈σx
n(t)〉ρ =

N∏
m=1

cos(2Jnmt) 6= 〈σx
n(t)〉(cl)ρ =

N∏
m6=n

sin(2Jnlt)
tJnm

. (7)

Discrete Phase Space

Following [4], define the phase space Ω(D) = {(0, 0), (0, 1), (1, 0), (1, 1)}×N and the corre-
sponding Wigner transform of ρ:

ρ 7→ wa = tr [ρAa] , Aa =
N⊗

n=1

1
2

[1 + ran
· σ] , a = (a1, ..., an) ∈ Ω(D).

where {ran
} are four distinct points on S2. Using this (first done in [3]), we find

〈O〉ρ =
∫

Ω
WO (S) Wρ (S) dS =

∑
a∈Ω(D)

waWO(ra1, ....raN
).

Ising model:

B One-site observables are exact, 〈σµ
n(t)〉ρ = 〈σµ

n(t)〉(cl)ρ .

B Correlations are not captured exactly, 〈(σµ
nσν

m)(t)〉ρ 6= 〈(σ
µ
nσν

m)(t)〉(cl)ρ .

Evolution of Observables in the Ising Model
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Figure 2. Time evolution in the 1D Ising model. Jnm = |n−m|−3 and N = 100.

Outlook

Analyse semi-classical time-evolution beyond the Ising model.

Improve accuracy by exploiting Poisson structure in numerical time integration.

Use Weyl calculus for beyond semi-classical approximations.
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