

Phase Space Methods for Spin Systems

Caroline Lasser¹ Christian B. Mendl¹ Oliver H. Schwarze¹

¹School of Computation, Information and Technology, Technical University of Munich

(3)

N-particle Spin Systems

Consider the Hilbert space $\mathcal{H} = \mathbb{C}^{2N}$, $N \gg 1$, of a system of N spin-1/2 particles, and a Hamiltonian matrix $H \in \text{Herm}(\mathcal{H})$ as for example the Heisenberg Hamiltonian:

$$H = \sum_{n,m=1}^{N} \left(J_{nm}^x \sigma_n^x \sigma_m^y + J_{nm}^y \sigma_n^y \sigma_m^y + J_{nm}^z \sigma_n^z \sigma_m^z \right), \tag{1}$$

with constants $J_{n,m}^{\mu} \in \mathbb{R}$ such that $J_{nn}^{\mu} = 0$ for all $\mu = x, y, z, m, n = 1, \dots, N$ and Pauli- μ operators σ_n^{μ} acting on site n.

The quantum evolution of an observable $O_{init} \in \text{Herm}(\mathcal{H})$ is given by the von-Neumann equation

$$\dot{O}(t) = i [O(t), H], \quad O(t = 0) = O_{\text{init}}$$
 (2)

Consider a density matrix $\rho \in \text{Herm}(\mathcal{H})$ with $\rho \succeq 0$, and $\operatorname{tr} \rho = 1$. The expectation value of O(t) with respect to ρ is

Two-body Interactions

If the Hamiltonian $H \in \text{Herm}(\mathcal{H})$ contains only two-body interactions, then $\{W_A, W_H\}_{\star} = \{W_A, W_H\}_1 + \{W_A, W_H\}_2$ with

$$\{W_A, W_H\}_1 = 2 \sum_{n=1}^N \left(\partial_n^{\mu} W_A\right) [K_n]_{\mu}^{\nu} \left(\partial_n^{\nu} W_H\right), \{W_A, W_H\}_2 = 2 \sum_{\substack{n_1, n_2 = 1 \\ n_1 \neq n_2}}^N \left(\partial_{n_1}^{\mu_1} \partial_{n_2}^{\mu_2} W_A\right) \left([I_{n_1}]_{\mu_1}^{\nu_1} [K_{n_2}]_{\mu_2}^{\nu_2} + [K_{n_1}]_{\mu_1}^{\nu_1} [I_{n_2}]_{\mu_2}^{\nu_2}\right) \left(\partial_{n_1}^{\nu_1} \partial_{n_2}^{\nu_2} W_H\right).$$

In this case, the error of the semi-classical approximation is given by (see also [2]):

$$\langle O(t) \rangle_{\rho} - \langle O(t) \rangle_{\rho}^{(\text{cl})} = \int_{\Omega} \left(\int_{0}^{t} \{ W_{O_{\text{init}}} \circ \Phi^{\tau}, W_{H} \}_{2} \circ \Phi^{t-\tau} \mathsf{d}\tau \right) W_{\rho} \, \mathsf{d}\mathbf{S}$$
(6)

 $\langle O(t) \rangle_{\rho} := \operatorname{tr} \left[O(t) \rho \right].$

Numerical simulation of O(t): Challenging for $N \gg 1$.

Wigner Functions

Let N = 1 and $\mathbb{S}^2 = \{ \mathbf{S} = (S^x, S^y, S^z) \in \mathbb{R}^3 \mid \|\mathbf{S}\|_2 = 1 \}$. Following [1], we set $\Omega = \mathbb{S}^2$ and consider the map

 $\Delta: \Omega \to \operatorname{Herm}(\mathcal{H}), \quad \Delta(\mathbf{S}) = \frac{1}{2}(\mathbb{1} + \mathbf{S} \cdot \sigma),$

where $\sigma = (\sigma^x, \sigma^y, \sigma^z)$. The Wigner function of an operator $O \in \text{Herm}(\mathcal{H})$ is defined as $W_O: \Omega \to \mathbb{R}, \quad W_O(\mathbf{S}) = \operatorname{tr} \left[O\Delta(\mathbf{S}) \right].$

Let $N \ge 1$. Let $\Omega = (\mathbb{S}^2)^{\times N}$ and define the Δ -kernel and Wigner transforms as

$\Delta_{\mathbf{M}}(\mathbf{S}_{1} - \mathbf{S}_{\mathbf{M}}) = \bigotimes \Delta(\mathbf{S}_{1}) = W_{\mathbf{S}}(\mathbf{S}_{1} - \mathbf{S}_{\mathbf{M}}) = \operatorname{tr}[O \Delta_{\mathbf{M}}(\mathbf{S}_{1} - \mathbf{S}_{\mathbf{M}})]$

Example: Ising Model

The **Ising model** is a special case of eq. (1) where $J_{nm}^x = 0 = J_{nm}^y$. Using eq. (5) with $W_H = \sum J_{nm}^z S_n^z S_m^z$, the corresponding classical flow is:

$$[\Phi^{t}(\mathbf{S}_{1},...\mathbf{S}_{N})]_{n}^{\mu} = \begin{cases} S_{n}^{x}\cos(2\omega_{n}t) + S_{n}^{y}\sin(2\omega_{n}t), & \mu = x, \\ S_{n}^{y}\cos(2\omega_{n}t) - S_{n}^{x}\sin(2\omega_{n}t), & \mu = y, \\ S_{n}^{z}, & \mu = z. \end{cases}$$

with $\omega_n = \sum J_{nm}^z S_m^z$. If the initial state is $\rho = (|+\rangle \langle +|)^{\times N}$ and $O_{\text{init}} = \sigma_n^x$, then

$$\langle \sigma_n^x(t) \rangle_\rho = \prod_{m=1}^N \cos(2J_{nm}t) \neq \langle \sigma_n^x(t) \rangle_\rho^{(\text{cl})} = \prod_{m\neq n}^N \frac{\sin(2J_{nl}t)}{tJ_{nm}}.$$
 (7)

Discrete Phase Space

Following [4], define the phase space $\Omega^{(D)} = \{(0,0), (0,1), (1,0), (1,1)\}^{\times N}$ and the corresponding Wigner transform of ρ :

$$\rho \mapsto w_a = \operatorname{tr}\left[\rho A_a\right], \quad A_a = \bigotimes^N \frac{1}{2} \left[\mathbbm{1} + \mathbf{r}_{a_n} \cdot \sigma\right], \ a = (a_1, ..., a_n) \in \Omega^{(D)}.$$

$$\Delta_N(\mathbf{S}_1, \dots, \mathbf{S}_N) - \bigotimes_{n=1} \Delta(\mathbf{S}_n), \quad W_O(\mathbf{S}_1, \dots, \mathbf{S}_N) - \operatorname{tr}\left[\mathcal{O}\Delta_N(\mathbf{S}_1, \dots, \mathbf{S}_N)\right].$$

The expectation value $\langle O \rangle_{\rho}$ of an observables O wrt. a density matrix ρ satisfies

$$\langle O \rangle_{\rho} = \int_{\Omega} W_O(\mathbf{S}_1, ..., \mathbf{S}_N) W_{\rho}(\mathbf{S}_1, ..., \mathbf{S}_N) \, \mathbf{dS}.$$

 $\triangleright \ \Omega \subset \mathbb{R}^{3N}$ with $N \gg 1$ requires high-dimensional numerical quadrature.

Weyl Calculus

Let $A, B \in \text{Herm}(\mathcal{H})$ and define the star product \star such that $W_A \star W_B := W_{AB}$. Based on [1], one can show that for our choice of Ω ,

$$W_A \star W_B = W_A \left[\prod_{n=1}^N \left(1 + \overleftarrow{\nabla}_n \cdot \overrightarrow{\nabla}_n - (\overleftarrow{\nabla}_n \cdot \mathbf{S}_n) (\mathbf{S}_n \cdot \overrightarrow{\nabla}_n) - i\overleftarrow{\nabla}_n \cdot (\mathbf{S}_n \times \overrightarrow{\nabla}_n) \right) \right] W_B$$

where $\overleftarrow{\nabla}_n$ and $\overrightarrow{\nabla}_n$ act on W_A and W_B , respectively. The Moyal bracket $\{W_A, W_B\}_{\star} := W_A \star W_B - W_B \star W_A$

can be expanded in terms of differentiation orders, $\{W_A, W_B\}_{\star} = \sum_{k=1}^{N} \{W_A, W_B\}_k$. The *k*-bracket has the form

$$\{W_A, W_B\}_k = 2 \sum_{|\mathbf{n}|=k} \sum_{|\alpha|=|\beta|=k} \Gamma_{\alpha,\beta}^{(\mathbf{n})} \left(\partial_{\mathbf{n}}^{\alpha} W_A\right) \left(\partial_{\mathbf{n}}^{\beta} W_B\right),$$

n=1

where $\{\mathbf{r}_{a_n}\}$ are four distinct points on \mathbb{S}^2 . Using this (first done in [3]), we find

$$\langle O \rangle_{\rho} = \int_{\Omega} W_O(\mathbf{S}) W_{\rho}(\mathbf{S}) \, \mathbf{dS} = \sum_{a \in \Omega^{(D)}} w_a W_O(\mathbf{r}_{a_1}, \dots, \mathbf{r}_{a_N}).$$

Ising model:

- \triangleright One-site observables are exact, $\langle \sigma_n^{\mu}(t) \rangle_{\rho} = \langle \sigma_n^{\mu}(t) \rangle_{\rho}^{(\text{cl})}$.
- \triangleright Correlations are not captured exactly, $\langle (\sigma_n^{\mu} \sigma_m^{\nu})(t) \rangle_{\rho} \neq \langle (\sigma_n^{\mu} \sigma_m^{\nu})(t) \rangle_{\rho}^{(cl)}$.

Evolution of Observables in the Ising Model

Outlook

Here, $\mathbf{n} \in \{1, ..., N\}^{\times k}$ with $\mathbf{n}_i \neq \mathbf{n}_j$, $\partial_{\mathbf{n}}^{\alpha} = \partial_{n_1}^{\alpha_1} ... \partial_{n_k}^{\alpha_k}$ and $\Gamma_{\alpha,\beta}^{(\mathbf{n})}$ is a product of terms like $[I_{n_i}]_{\alpha_i}^{\beta_i} = \delta_{\alpha_i\beta_i} - S_{n_i}^{\alpha_i} S_{n_i}^{\beta_i}$ and $[K_{n_i}]_{\alpha_i}^{\beta_i} = -i\varepsilon_{\alpha_i\gamma\beta_i}S_{n_i}^{\gamma}$, that contain an **odd** number of K-operators.

Semi-Classical Approximation of Dynamics

Wigner transforming both sides of eq. (2) gives

$$\frac{\mathsf{d}}{\mathsf{d}t}W_O = i\{W_O, W_H\}_{\star}.$$
(4)

The first bracket $\{\cdot, \cdot\}_1$ induces a *Poisson structure* on Ω and a flow map $\Phi^t : \Omega \to \Omega$ defined by

$$\frac{\mathsf{d}}{\mathsf{d}t} [\Phi^t]_n^{\mu} = i \{ S_n^{\mu}, W_H \}_1 |_{(\mathbf{S}_1, \dots, \mathbf{S}_N) = \Phi^t}, \quad \Phi^0 = \mathbf{1}.$$
(5)

Using this to approximate the dynamics, expectation values evolve as:

$$\langle O(t) \rangle_{\rho} \approx \langle O(t) \rangle_{\rho}^{(\mathrm{cl})} = \int_{\Omega} W_{O_{\mathrm{init}}} (\Phi^t(\mathbf{S})) W_{\rho}(\mathbf{S}) \, \mathrm{d}\mathbf{S}$$

Analyse semi-classical time-evolution beyond the Ising model.

- Improve accuracy by exploiting Poisson structure in numerical time integration.
- Use Weyl calculus for beyond semi-classical approximations.

References

- [1] A B Klimov and P Espinoza. "Moyal-like Form of the Star Product for Generalized SU (2) Stratonovich-Weyl Symbols". In: J. Phys. A: Math. Gen. 35.40 (2002), pp. 8435–8447.
- Wolfgang Gaim and Caroline Lasser. "Corrections to Wigner Type Phase Space Methods". In: [2] Nonlinearity 27.12 (2014), pp. 2951–2974.
- J. Schachenmayer, A. Pikovski, and A. M. Rey. "Many-Body Quantum Spin Dynamics with [3] Monte Carlo Trajectories on a Discrete Phase Space". In: Phys. Rev. X 5.1 (2015).
- William F. Braasch and William K. Wootters. "Transition Probabilities and Transition Rates in [4] Discrete Phase Space". In: Phys. Rev. A 102.5 (2020).

TRR 352 Mathematics of Many-Body Quantum Systems and Their Collective Phenomena

TRR 352 Annual Retreat

September 26, 2024