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N-particle Spin Systems

Consider the Hilbert space # = C*", N > 1, of a system of N spin-1/2 particles, and a
Hamiltonian matrix H € Herm (H) as for example the Heisenberg Hamiltonian:

N

nm-mn-m nm- 1n-m nmnm)? (1

H = Z (J> orod + JY olol + J°

n,m=1

with constants J;,, € R such that J;,, =0forall y =z,y,z, mn=1,...
operators ¢! acting on site n.

, NV and Pauli-u

The quantum evolution of an observable O;,ii € Herm () is given by the von-Neumann
equation

O(t)=1i[0(t),H], Of(t=0)= Oni (2)

Consider a density matrix p € Herm (H) with p = 0, and tr p = 1. The expectation value
of O(t) with respect to p is

O (1)), =1tr[O(1)p]. (3)

Numerical simulation of O(¢): Challenging for N > 1.

Wigner Functions

Let N =1and S* = {S = (5%, 5%, 5%) € R’ | ||S||> = 1}. Following [1], we set Q2 = S* and
consider the map

A:Q— Herm(H),

A(S) =11 +S-0),

2

where o = (0%, 07,

o”). The Wigner function of an operator O € Herm (H) is defined as
Wo:Q—=R, Wy (S) = tr [OA (S)] :

Figure 1. Phase space description for a single spin system (N = 1).

Let N > 1. Let Q = (S*)*" and define the A-kernel and Wigner transforms as

Ay (S, ...S (X)A . Wo(Sy,...,Sn) =tr[OAN (Sy,...,Sy)].

The expectation value ( , of an observables O wrt. a density matrix p satisfies

/WO (Sy,....S

> Q c R* with N >> 1 requires high-dimensional numerical quadrature.

N)W, (S, ...,Sy) dS.

Weyl Calculus

Two-body Interactions

If the Hamiltonian H € Herm(H) contains only two-body interactions, then
(WA, Wrte = {Wa,Wg}i +{Wa, Wg}, with

{Wa, Wit =2 (0Wa) [K,]}, (0 W),

n= 1
(Wi, Wy} =2 Z (OONWa) (L (Kl + (K] (1)) (001072 W) -
g

In this case, the error of the semi-classical approximation is given by (see also [2]):

(O(t)), — (0(t)! = /Q ( /O t{WOimtoch,WH}zochtTdT> W,dS  (6)

Example: Ising Model

Let A, B € Herm (‘H) and define the star product x such that W+« Wp := W, 5. Based on
[1], one can show that for our choice of (),

Wk = Wy ﬂ(u%n-?n—(%n-s (S, V) =iV, (S, x V) ) Wi

n=1

where %n and ?n act on W, and Wpg, respectively. The Moyal bracket
{WA, WB}* L= WA * WB — WB * WA

N
can be expanded in terms of differentiation orders, {W 4, Wi}, = Zk—1{WA’ Wghi. The
k-bracket has the form -

{WA, WB}k — 2 Z Z ngl)ﬁ (3ﬁWA) (5£WB) :

n|=Fk |a|=[5|=Fk
Here, n € {1 N} with n; # n;, 95 = 92'...9%* and Fgg is a product of terms like
1) = S;)‘;Sﬁ; and [K,, ] = —ica557 , that contam an odd number of K-operators.

Semi-Classical Approximation of Dynamics

Wigner transforming both sides of eq. (2) gives

d .
&WO — Z{WOa WH}* (4)

The first bracket {-, -}, induces a Poisson structure on ) and a flow map &' : Q — Q
defined by

d

&[@% =i { !, W hlis, syt

Using this to approximate the dynamics, expectation values evolve as:

P’ =1. (5)

(0, ~ ()" = [ Wou(@'()) W(S) ds
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The Ising model is a special case of eq. (1) where J>  =0= J’/ . Using eq. (5) with
Wy = Z J? S*S* the corresponding classical flow is:

nm=—n=—"m?

S cos(2wpt) + SYsin(2wyt), ==,
DSy, ...SK)]H = < SYcos(2wpt) — STsin(2wyt), =1y,
SZ? o= <.
with w,, = Z JZ 8% . If the initial state is p = (|+) (+])*" and Ot = o2, then
N N .
i (c) SlD(QJnﬂf)
1__[ co8(2Jpmt) # (on(t)),” = 1;[ S (7)

Discrete Phase Space

Following [4], define the phase space Q'Y = {(0,0), (0,1), (1,0), (1,1)}*" and the corre-

sponding Wigner transform of p:

A, ® ]1 + T, 0|, (CLl, ...,an) S~ QL)

p = w, = tr|pAg],

where {r, } are four distinct points on S*. Using this (first done in [3]), we find

Ising model:
> One-site observables are exact, (c/(t)) = (o (t))'V.

P n
> Correlations are not captured exactly, ((c%o%)(t)), # ((otor)(t)".

1.0 i P
> (ont) 0.10- > ((ohan)(t)
0.87 semi-cl. continuous sampling 0.08. 7
semi-cl. discrete sampling '

001 0.06-

041 0.041

0.2_ 002_

0.0 0.001

0 1 2 3 4 0 1 2 3 4

tJ tJ
Figure 2. Time evolution in the 1D Ising model. .J,,,, = |n — m|™ and N = 100.

Outlook

* Analyse semi-classical time-evolution beyond the Ising model.
* Improve accuracy by exploiting Poisson structure in numerical time integration.
» Use Weyl calculus for beyond semi-classical approximations.
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