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Abstract

We consider the evolution of a gas of
N bosons in the three-dimensional Gross-
Pitaevskii regime in which particles are ini-
tially trapped in a volume of order one and
in which their dynamics is governed by the
Gross-Pitaevskii Hamiltonian

HN =
N∑
j=1

−∆xj
+

N∑
i<j

N2V (N(xi − xj)).

We construct a quasi-free approximation of
the many-body dynamics, whose distance to
the solution of the Schrödinger equation con-
verges to zero, as N → ∞, in the L2(R3N )-
norm. To achieve this goal, we let the
Bose-Einstein condensate evolve according to
a time-dependent Gross-Pitaevskii equation.
After factoring out the microscopic correla-
tion structure, the evolution of the orthogo-
nal excitations of the condensate is governed
instead by a Bogoliubov dynamics, with a
time-dependent generator quadratic in cre-
ation and annihilation operators. As an ap-
plication, we show a central limit theorem for
fluctuations of bounded observables around
their expectation with respect to the Gross-
Pitaevskii dynamics.

The Scattering Solution

• Two particle correlations can be de-
scribed via the scattering solution:[
−∆+ 1

2V
]
f = 0

• Outside of the support of V we have
f(x) = 1− a

|x|

• The scattering length a is the effective
range of the potential

• Truncation: Neumann problem on ball
|x| ⩽ ℓ:[
−∆+

N2

2
V (Nx)

]
fℓ(Nx) = N2λℓfℓ(Nx)
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Bose-Einstein Condensation

A sequence ΨN of N -particle wave functions
exhibits complete Bose-Einstein condensation
in φ ∈ L2(R3) if almost all particles are in
this one-particle state. Mathematically, this
means that

lim
N→∞

1

N
⟨ψN ,

N∑
i=1

(1− |φ⟩⟨φ|)i ψN ⟩ = 0 (1)

where i specifies on which particle the op-
erator acts. For minimizers of HN +∑N

i=1 Vext(xi) this was shown in [6].

Condensate Evolution

After switching off the trap, the condensate
wave function changes over time according to
the time-dependent GP-equation (see [4]):

i∂tφt = −∆φt + 8πa|φt|2φt, φ0 = φ. (2)

The number of particles that is not in the
condensate φt can also be bounded quanti-
tatively. For initially trapped systems, it is
of order 1 in N ; in other words, the fraction
appearing in (1) is O(1/N) [3].

Beyond Condensate Evolution: Flucuation Dynamics

Most particles are in the condensate, and therefore, their evolution is described by (2). In order
to describe the remaining fluctuations, it is useful to factor out the condensate.

• Decompose ψN,t =
∑N

j=0 ψ
(j)
N,t ⊗s φ

⊗(N−j)
t where ψ(j)

N,t ∈ L2
⊥φt

(R3)⊗sj

• Define unitary UN,tψN,t = {ψ(0)
N,t, . . . , ψ

(N)
N,t } = ξN,Ut

∈ F⩽N
⊥φt

=
⊕N

n=0 L
2
⊥φt

(R3)⊗sn

• Fluctuation dynamics i∂tξN,Ut
= (UN,tHNU

∗
N,t + (i∂tUN,t)U

∗
N,t)ξN,Ut

• This idea was introduced in [5] in order to obtain a norm approximation in the less singular
mean field scaling where the interaction has the form N−1V and the condensate evolves as
i∂tφt = −∆φt+V ∗|φt|2φt. The norm approximation is obtained by comparing this evolution
to one defined via a quadratic generator which gives rise to a time-dependent Bogoliubov
transformation.

Bogoliubov Transformations

On the Fock space F =
⊕∞

n=0 L
2(R3)⊗sn

a unitary operator U : F → F is a Bogoli-
ubov transformation if its action on annihila-
tion/creation operators is given as follows:

U∗a(f)U = a(Uf) + a∗(V f)

for all f ∈ L2(R3) and bounded linear maps
U, V : L2(R3) → L2(R3) satisfying U∗U −
V ∗V = 1 and U∗V̄ = V ∗Ū .

Describing pair correlations

The most relevant correlations are pair corre-
lations that can be be described via an (ap-
proximate) Bogoliubov transformation eBt for

Bt ≈ −N
2

∫
[1−fℓ(N(x−y))]φt(x)φt(y)a

∗
xa

∗
y−h.c.

Factoring out these correlations allowed to
prove norm approximations for potentials of
the form N3β−1V (Nβ ·) for β < 1 in [1, 2].

New Result: Quasi-Free Approximation in Gross-Pitaevskii Regime

Let 0 ⩽ V ∈ L3(R3) be radial and compactly supported. Let φ ∈ H6(R3) and eBt as above.
For ψN ∈ L2(R3)⊗sN s.t.

⟨e−B0UN,0ψN , (K2 +N 6) e−B0UN,0ψN ⟩ ⩽ C,

where N =
∫
a∗xax and K =

∫
∇xa

∗
x∇xax, holds uniformly in N there are C, c > 0 and ωN,t ∈ R

s.t.
∥UN,tψN,t − eiωN,teBtU2(t)e

−B0UN,0ψN∥ ⩽ Cece
c|t|
N−1/8.

• U2(t) is an (approximate) Bogoliubov transformation and thus the approximate dynamics on
Fock space just contains a phase and Bogoliubov transformations

• Crucial ingredient for the proof: unitary transformation that is cubic in annihilation/creation
operators used to renormalize the generator on Fock space

• The initial condition allows ψN = U∗
N,0e

B0eB̃Ω for B̃ ≈
∫
τ(x, y)a∗xa

∗
y − h.c. , τ ∈ H2 and

such states should be good approximations of the ground state in a trap

• The unitary UN,t is slightly modified compared to above

• Application: We show a central limit theorem for bounded one-particle observables


