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systems on general graphs
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Setting: frustration-free quantum spin systems

We consider quantum spin systems defined on a graph I'.

Hilbert space: For A C T finite, set Hy = ®Q), ., C*
Hamiltonian:
Hy= ) &X)
XCA

with ® a positive semidefinite, finite-range interaction.

Assumption: H, is frustration-free, I.e., inf spec H, = 0.
Spectral gap: v, = inf(spec Hy \ {0}) > 0.

Project A8:

- work package A: extensions of finite-size criteria
- work package B: applications of finite-size criteria

Result A on critical gap thresholds (WP A)

Suppose the graph I' can be embedded in R”. For each £ € N,
introduce the Euclidean rectangle

3

k/D
R(k) = lgs1,- -, leip), I, = <§>

and let 7, = subsets of I contained in R(k) up to translations and
permutations of the coordinates.

Theorem (L—Lucia 2024 [7]) Set vr, = infrcr, va. SUppose that

77 =0
Then, for every ¢ > 0,
k4+e
yfk()(p), k — oo
k

Comments:

1. Ignoring log’s, this says that if the gap closes in the limit, then it
must close at least like the inverse-square [,

2. result proves inverse-square critical gap scaling is universal
property of frustration-free Hamiltonians. Prior results for
nearest-neighbor interactions on specific graphs [1, 3, 8] or
assumptions on the g.s. [9].

3. CFT gap scaling would be associated with vz, ~ [,
— Informal no-go result: finite-range frustration-free Hamiltonians
cannot produce CFT’s in continuum limit.

Tool A.1: divide-and-conquer approach

Kastoryona—Lucia [0] developed an iterative scheme to relate over-
laps of g.s. on different system sizes

O

1— 6,
' >
}fﬁfl YF. 2 VFi, H py
— ()

and 5k = SUP4,B) ||PAPB—PAuB|| for A, B € F;. s.t. d(A\B, B\A) ~ .

Tool A.2: refined Detectability Lemma

The divide-and-conquer approach gives lower bound on gap via
overlaps. For bootstrapping, we need a converse.

Lemma (refined overlap bound): 6, < Cyexp (—Co/Ar5) -

This improves previous bound by [6] from ~£, to , /47 and its why we
get inverse-square scaling.

Proof idea: generalized refined Detectability Lemma a la Gosset-
Huang [2] (coarse-graining and then Chebyshev polynomials)
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Result B on gaps of random Hamiltonians (WP B)

Let G be a d x d GOE matrix and set
d
G, q o
v = —>—¢,®e; c C"®C
oV (G
Given a finite graph A, consider the random Hamiltonian
Hy = Z Qys Quy = ) (V] @ La\fz41- (1)
Ty

l.e., n.n. interaction = a fixed random rank-1 projector.

Comment: symmetry of GOE matrix C' implies that ()., acts on
undirected edges (for simplicity only)

Theorem (Hunter-dones—L 2024 [4]) Assume that d, k > 1 satisfy
d

2(2e?logd + 1/4)?
Then, there ex. ¢ > 0 and an event () with probability at least
P(Q) > 1 — 2e /10 (3)

such that for every w € () the following holds:
For every finite graph A\ of maximal degree k, vy, > ¢ > 0.

> 2k — 2. (2)

Comments:
1. This gives many gapped Hamiltonians. The event () and the lower
bound c are universal (only depend on £ and not otherwise on A)

2. E.q., iIf £k =2, then d > 15 ensures a gap with 99% probability.
(Current multi-mode cavity experiments can reach d =~ 10)

3. The Hamiltonians (1) are automatically frustration-free (for suff.
large d). Proved by a cluster expansion and QSAT crit. [10, 5]

Tool B.1: three-vertex criterion a la Knabe

Proposition (three-vertex criterion)
Let Hs = Q)12+ Q3. For every finite graph A of maximal degree k,

2k — 3
> — .
YA > 2(k — 1) (% ST 2) (4)

Proof idea: Squaring the Hamiltonian and combinatorics.

_ - 2k—3
Corollary: It suffices to prove 3 > 5.

Tool B.2: concentration bounds

By Fannes-Nachtergaele-Werner lemma and explicit calculations, it
suffices to control et

1Q12Q23]] = Tr (G

By Lévy concentration, suffices to control E[||G||?] < (E[Tr(G2)])"”.

By comparing with GUE it is easy to prove
/D
\ 1/p (2p)! 1
(E[Te(GT)]) 7 < <2pp! d>
The optimal choice is essentially p = log d which gives 2¢*log d in (2).
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