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Setting: frustration-free quantum spin systems

We consider quantum spin systems defined on a graph Γ.
Hilbert space: For Λ ⊂ Γ finite, set HΛ =

⊗
x∈Λ Cd

Hamiltonian:
HΛ =

∑
X⊂Λ

Φ(X)

with Φ a positive semidefinite, finite-range interaction.

Assumption: HΛ is frustration-free, i.e., inf spec HΛ = 0.
Spectral gap: γΛ = inf(spec HΛ \ {0}) > 0.
Project A8:

work package A: extensions of finite-size criteria

work package B: applications of finite-size criteria

Result A on critical gap thresholds (WP A)

Suppose the graph Γ can be embedded in RD. For each k ∈ N,
introduce the Euclidean rectangle

R(k) = [lk+1, . . . , lk+D], lk =
(

3
2

)k/D

and let Fk = subsets of Γ contained in R(k) up to translations and
permutations of the coordinates.

Theorem (L–Lucia 2024 [7]) Set γFk
= infΛ∈Fk

γΛ. Suppose that

inf
k≥1

γFk
= 0.

Then, for every ε > 0,

γFk
= o

(
k4+ε

l2k

)
, k → ∞

Comments:

1. Ignoring log’s, this says that if the gap closes in the limit, then it
must close at least like the inverse-square l−2

k

2. result proves inverse-square critical gap scaling is universal
property of frustration-free Hamiltonians. Prior results for
nearest-neighbor interactions on specific graphs [1, 3, 8] or
assumptions on the g.s. [9].

3. CFT gap scaling would be associated with γFk
∼ l−1

k .
→ informal no-go result: finite-range frustration-free Hamiltonians
cannot produce CFT’s in continuum limit.

Tool A.1: divide-and-conquer approach

Kastoryona–Lucia [6] developed an iterative scheme to relate over-
laps of g.s. on different system sizes

inf
k≥1

γFk
≥ γFk0

∞∏
k=k0

1 − δk

1 + k−1−ε

and δk = sup(A,B) ‖PAPB −PA∪B‖ for A, B ∈ Fk s.t. d(A\B, B \A) ∼ lk.

Tool A.2: refined Detectability Lemma

The divide-and-conquer approach gives lower bound on gap via
overlaps. For bootstrapping, we need a converse.

Lemma (refined overlap bound): δk ≤ C1 exp
(
−C2

√
γFk

lk
k1+ε

)
.

This improves previous bound by [6] from γFk
to

√
γFk

and its why we
get inverse-square scaling.

Proof idea: generalized refined Detectability Lemma à la Gosset-
Huang [2] (coarse-graining and then Chebyshev polynomials)

Result B on gaps of random Hamiltonians (WP B)

Let G be a d × d GOE matrix and set

v =
d∑

i,j=1

Gi,j√
Tr(G2)

ei ⊗ ej ∈ Cd ⊗ Cd

Given a finite graph Λ, consider the random Hamiltonian

HΛ =
∑
x∼y

Qxy, Qxy = |v〉〈v| ⊗ 1Λ\{x,y}. (1)

i.e., n.n. interaction = a fixed random rank-1 projector.

Comment: symmetry of GOE matrix C implies that Qxy acts on
undirected edges (for simplicity only)

Theorem (Hunter-Jones–L 2024 [4]) Assume that d, k ≥ 1 satisfy
d

2(2e2 log d + 1/4)2 > 2k − 2. (2)

Then, there ex. c > 0 and an event Ω with probability at least

P(Ω) ≥ 1 − 2e−d2/16
(3)

such that for every ω ∈ Ω the following holds:
For every finite graph Λ of maximal degree k, γΛ ≥ c > 0.

Comments:

1. This gives many gapped Hamiltonians. The event Ω and the lower
bound c are universal (only depend on k and not otherwise on Λ)

2. E.g., if k = 2, then d ≥ 15 ensures a gap with 99% probability.
(Current multi-mode cavity experiments can reach d ≈ 10)

3. The Hamiltonians (1) are automatically frustration-free (for suff.
large d). Proved by a cluster expansion and QSAT crit. [10, 5]

Tool B.1: three-vertex criterion à la Knabe

Proposition (three-vertex criterion)
Let H3 = Q1,2 + Q2,3. For every finite graph Λ of maximal degree k,

γΛ ≥ 2(k − 1)
(

γ3 − 2k − 3
2k − 2

)
. (4)

Proof idea: Squaring the Hamiltonian and combinatorics.
Corollary: It suffices to prove γ3 > 2k−3

2k−2.

Tool B.2: concentration bounds

By Fannes-Nachtergaele-Werner lemma and explicit calculations, it
suffices to control

‖Q1,2Q2,3‖ = ‖G‖2

Tr(G2)

By Lévy concentration, suffices to control E[‖G‖2] ≤ (E[Tr(G2p)])1/p
.

By comparing with GUE it is easy to prove(
E[Tr(G2p)]

)1/p ≤
(

(2p)!
2pp!

d

)1/p

The optimal choice is essentially p = log d which gives 2e2 log d in (2).
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