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Mean-field Quantum Spin Systems
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on Hy=Q)C withS(n)=10 - ®s @1

n=1

N
Total spin-vector of N-quibits: S = ~S(n)
n=I1

and spin vectors s = (s,, s, ;) consisting of the three generators of SU(2):
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Mean-field Hamiltonian = Weyl ordered, self-adjoint polynomial P : R® — R of the total spin:

H=N P(%S)

Examples: Lipkin-Meshkov-Glick model P(m) with «, 3,v € R.
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Special case: a =0, 3 =1 Quantum Curie-Weiss model
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Block diagonalization: — C2/+! My ;= .
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Methods I: Semiclassical Description

Spin J operators: Sy, 5, =145, (and cyclically) Sy =S, £15, on Hilbert space C2/+!
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Figure 1. The Bloch ball B, and sphere S

Bloch coherent state: Q= (6, ),

! (e"S_ — ew&)) J)

) = exp (5

Symbols of a linear operator G on C?/*!:

2J +1

&= 4

Lower:

9() == (Q|G|Q) Upper: /dQ G(Q) |)(Q]

Block (J, a)-Hamiltonians H;, = NP(% S) with spin-J operator S = (S,,S,,5.)" on C*/*! have
the consistent semiclassical symbol P : B; — R thanks to:

Quantitative Duffield Theorem [2]: For some C € [0, >):
Lower: sup sup sup (€, J|H;.|Q,J) — N P(% e(Q))‘ <C.
N 0<J<N/2 Q
2.7 + 1 .
Upper: supsup |[Hjo — i dQ) N P(3 e(Q)) |, J)(9, J’H <C,
N Ja« @

Immediate implication given [1, 4, 7] is the semiclassics for the free energy:

) 1 B 2 _ B )
]\}1_1;1’100 N7 Intrexp ( 5NP(NS)) 7:12[%’)1(} {I(’F) 55%15% P (Te(Q))} .
with the binary entropy I(r) = -2 In 4 — X 2,

Methods ll: Phase Space Geometry at Mininma

Recipe from Fluctuation Theory: Quadratic approximations at the minima m; (m;,...,m;) €

B, of P determine the low-energy spectra and spectral gap of H.

See e.q. [6, 3] for implementations.

= Simple-minded Taylor approximation:
1

P(m) = P(my) + VP(mg) - (m —my) + é(m — my)Dp(my)(m — mg) + O ((m — my)*)
= Case |my| = 1: VP(my) = —|VP(my)|en, does not vanish in general!
= Fluctuations for fixed J occur only in the angular directions:

Localchart® :ran Q;, — Tm052 and its quadratic approximation to P o &

D#(mg) == Q  Dp(my)Q . + |[VP(my)|Q ., Q1 = lgs — € €m,.
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Low Energy Spectra & Gaps

Theorem [5]: Incase P has a unique global minimum at m, € S* at which |V P(my)|, det D5 (my) >
0, the lowest eigenvalues of H coincides with points in the set

NP(my) + (2k — 1)|VP(my)| + (2m + 1)\/det D#(my) + o(1)

where m € Ny and £ = N/2 — J € Nj relates to the total spin J. In particular, the ground-state is
unique and found at J = N/2, and the spectral gap is

gap H = 2min {\VP(mo)\, \/det D]%(mo)} + o(1).

Theorem [5]: .,my; € S? at which
'V P(my,)|, det D5(m;) > 0, the lowest eigenvalues of H coincides with points in the set

In case P has a finite number of global minima at m,, ..

NP(my) + (2k — 1)|VP(my)| + (2m + 1)\/det D#(my) + o(1)

wherel € {1,.... L}, m € Nyand k = N/2 — J € N relates to the total spin J.

Quantum Curie-Weiss model: P(m) = —m? — ym,

M, — (O, O, 1)T

Paramagnetic phase ~ > 2: gap H = 2+/~(y — 2)

Ferromagnetic phase 0 < v < 2: mj = (£+/1 —+2/4,0,7/2)T

]VP(m(ﬂ)E)’ =2, det D]%(moi) — 4 — 72

Nearly doubly degenerate ground states separated by a spectral gap 4,/1 — 72/4 from the rest of the
spectrum.
See also [8, 9] elated results and further motivations

' Theorem [5]: In case the unique global minimum m; € B; is at 0 < |my| < 1 with Dp(m,) > 0.
Then the ground state is contained in a subspace with total spin J with |J — N|my|/2| < O(v/N) and

Ey(H) = Ey(Ha) = NP(my) + [m|y/det D(mo) + o(1).
For any J with |.J — N|my|/2| < o(+/N) the ground-state energy FEy(H ) is still given by the above

formula.

Methods lll: Controlling Fluctuations

Overall strategy: Investigate spectra of each block H;, separately, and in each block apply:

Krein-Feshbach-Schur method: [10]
H, and E and F' orthogonal projections with £/ + F' = 14. Assume that a < infspec FAF and let
R(a) = (FAF — aF)~! stand for the block inverse on F'H{. Then

Let A be a bounded self-adjoint operator on a Hilbert space

a €specA ifandonlyif 0¢€spec FAE —aF — FAFR(a)FAE.

In particular, the eigenvalues o(A) < a1(A) < ... of A (counted with multiplicities) and the respective
eigenvalues of FAE satisfy

_ lBAF)?

— dist(spec FAF, a)

j(A) — o (EAE)]

provided aj(A) < a < spec FAF.

As illustration, suppose there is a unique minimizers at m; = e, € S°.
Subspace of C>/*! at minimizing direction is spanned by z-basis:

HY =span {|N/2 — k) € C*| k € {0,,1,...,K}}

(2S./N —1)PF|| < K/N.

= Size of fluctuation operators ¢ € {x,y}: H\/%Sg Pf“ < CVK.

: [\/%Sx, \/%Sy} =1 25./N =1 (1+0(1)) asymptotically hamonic oscillator algebra.

Quadratic approximation of P at m:

Q(mgy) .= N P(mg) + 2 (S _ %mo) . VP(my) + %S . D]%(mo)S on C27+1

— o(1) as long as Ky = o(N"/?)and J > N/2 — Ky.

| (H 1 = Q) P
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