The tree energy of dilute Bose gases at

CRC

Haberberger, F.' Hainzl, C. !

TRR

low temperatures
Nam, PT. 1

Schlein, B. 2 Seiringer, R. 3

Triay, A. !

352

Morin, L. 4

11 MU Munich 2UZH Zurich

The Hamiltonian

& collaboration outside TRR352: Fournais, S.4

= We consider N bosons in a box

N N
Hy = —ZAZ'—FZV(QZZ'—ZE]')
1=1

i<j

with 0 < V(|z|) compactly supported

= According to [Lee-Huang-Yang '57] at low i e
temperatures and in the dilute regime pa® — 0 the A

gas behaves as a collection of independent

______________________________

quantum oscialltors

Hy~ Y  +/p'+ 16mpap’ala,
pE2T L3

where p = N/|Q)| and a is the scattering length of V
(radius for hard core potentials).

= We justity the LHY conjecture by computing the Free energy in the thermodynamic

limit, © (N T)
. QLY
f(p,T)= lim :
(P, T) Q=00 |§2]
N/|Q=p

where (N, T) = inf{Tr (HNT') + T Tr(I'logI') | ' > 0, Tr(I") = 1} with 7' > 0 the temperature

Main Result
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The first order is governed by two body collisions

dma = inf{ \Vf]z—FlV]f\Q: lim f(:c)—l}

|x|—00

The LHY correction at T = 0 is the total (renormalized) ground state energy of the
quantum oscillators
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4ﬂl5ﬁ(pa) ~ 5 Z V4 16mpap? — p* — 8mpa +

pE2r L3

(8mpa)?
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The thermal contributions come from the elementary excitations above the condensate

5/2
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= Correlation length (aka Healing length or Gross—Pitaevskii length) ¢qp = (pa) !/

= Small temperatures 0 < T < pa (~ g(—}%)

Previous works:

= T =0 Upper bound: Dyson (1957), Yau-Yin (2009), Basti-Cenatiempo-Schlein (2021),
= T =0 Lower bound: Lieb-Yngvason (1998), Fournais-Solovej (2020,2023)
= T > 0 First order: Seiringer (2008), Yau-Yin (2009)

= Methods from Boccato-Brenneck-Cenatiempo-Schlein (2019),
Basti-Cenatiempo-Schlein (2021), Nam-Triay (2023)

Division into Boxes

= Using Neumann — Dirichlet bracketing we prove
the approximate additivity of the (free) energy
. FQ(N7 T) FA(IOL37 T)
1) = lim ~ :
flo.T) =g, ] Al
= To capture correlations L > /qp

‘Q‘l/?)

= In large boxes the interaction potential dominates
the kinetic energy (small gap) and the LHY L

computation are hard to carry out. A

Bogoliubov’s Theory

We rewrite Hy on A in second quantization:

1
Hy = Z paia, + 5 Z (Um ® U, Vuy, @ uy) a;,a,a,a,,
p m,n,p,q
Bogoliubov’s approximation: most particles are in the BEC «} ~ ay ~ VN + discard 3rd

and 4th order in a', a:
Np - A . 1 -
Hy ~ TV(O) + Z (p2 + pV(p))apap + 5 Z ,OV(p)(a;ga;g + a,a,)
p#70 p70
This quadratic Hamiltonians is exactly diagonalizable but gives the LHY conjecture with

the wrong constant: 8ra replaced by V(p).

—> Higher order contributions are responsible for the renormalization
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Renormalization at large momenta

The renormalization V(p) — 8ra is caused by the correlation structure at short length scale
{ < lop

= it is encoded by the scattering solution
1
—Af+ §V f=0

= two main processes are taking place: hard and soft collisions. To extract the
corresponding contributions, we conjugate the Hamiltonian with suitable unitary
transformations Uy,.,q = €Pwi, U, = ePot, where

1 N
Bpard = 5 Z f(k)aLaT_k — h.c.

k>lap

1 N
B = 5 Z f(k)a,];aimpap — h.c.

k>>fGP

—1
<

= This is a unitary implementation of the multiplication by a Jastrow type correlation
factor [[;_; f(zi — z)

Upper Bound

= Trial state with Dirichlet boundary conditions
= To avoid pollution coming from the boundary effects we need boxes of size L > a/(pa’)

= Problem: While the action of the quadratic unitary U,..q is exactly computable, the
action of the cubic U,y is not and B, > 1 in this regime, forbidding any naive
perturbative argument.

= Solution: We decompose the U, into infinitesimal unitaries
k
U soft — H Us(ofla
k

each parametrized by a low momentum £ < /. Generalizing some exclusion principle

from [Basti-Cenatiempo-Schlein ‘21] for the ground state energy, we are able to
compute exactly the action of each unitary transformation on an appropriate trial state

Usﬁi — COS Xk T Bioft,k X
k

with X, = Bl | < 1.
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Lower bound

= The subadditivity of the free energy leads to dealing with Neumann boundary
conditions.

= Problem: Solving the scattering equation for the Neumann Laplacian is harder and its
solution is not known explicitly [Boccato-Seiringer '23].

= Solution: Instead we take the scattering solution on the full space, add a spatial
cut-off and use a mirroring technique to obtain a kernel in the domain of the
Neumann Laplacian. This kernel is also diagonal in the Neumann basis, allowing us to
diagonalize exactly the Bogoliubov Hamiltonian.

P(1,1)(37>
fl@,y) =) fa(Px) —y)
z 2y Pz
-~ P(—LO)(J'j " )< |
— Z fcut(p)up(x)up(y) A

Preprint:| Haberberger E., Hainzl C., Nam P.T., Seiringer R. & Triay A. The free energy of
dilute Bose gases at low temperatures arXiv:2304.02405

= For hard-sphere and potentials with large L! norm, a first renormalization has to be

performed before following Bogliubov’s strategy. The idea of [Fournais-Solovej ‘23] is
to rewrite the interaction potential by completing the square

Z V(CI;Z - x]) _ Beﬂ _|_ Qlieﬂ _|_ Qléeﬂ _|_ Qg@ﬂ _|_ QZ@H

1<J
where only V f appears (which has a small L! norm), except in Q™ > 0 which is thrown
away for a lower bound. In a combined effort, we merged the techniques of
[Haberberger-Hainzl-Nam-Seiringer-Triay ‘23] and [Fournais-Solovej '20-'23] to deal
with the hard core case.
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