

Correlation decay for particle systems on the real line interacting via a Lennard-Jones type potential

Chan, Yoon Jun¹ Heydenreich, Markus¹

¹University of Augsburg, Germany ²Ludwig Maximilian University of Munich, Germany Universität Augsburg University

(8)

Motivation

We study one dimensional systems interacting via a Lennard-Jones type potential with hard core, and introduce the two different setting in which correlation decay can occur: the Lagrangian picture and the Eulerian picture (see Figure 1). Notably, in the Lagrangian picture the system can be seen as a lattice system with continuous (positive) spin. We try to establish a connection between the two picture by developing techniques to translate the quantitative results for Lagrangian picture to that for Eulerian picture.

Infinite Volume Gibbs Measure

Question and Answer

Suppose that for some c > 0,

$$\mathbb{E}[Z_0 Z_n] - \mathbb{E}[Z_0] \mathbb{E}[Z_n] = \mathcal{O}(e^{-cn}).$$
(7)

Under what conditions do we have that there exists some c' > 0, such that for any Borel sets A, B,

$$\mathbb{E}[N_A N_B] - \mathbb{E}[N_A]\mathbb{E}[N_B] = \mathcal{O}(e^{-c'd(A,B)}),$$

where N_A, N_B are number of particles in A, B respectively?

Jansen, Sabine²

Shift operator T_t : for any measurable set B, $T_tB := \{y + t \mid y \in B\}$.

Consider N particles with positions x_1, \ldots, x_N and inter-particle spacing $z_i = x_{i+1} - x_i$. The energy of the system interacting via the aforementioned potential, truncated to nextnearest-neighbour:

$$E_N(z_1, \dots, z_{N-1}) = \sum_{i=1}^{N-1} v(z_i) + \sum_{i=1}^{N-2} v(z_i + z_{i+1}),$$
(1)

where $v : [0, \infty) \to \mathbb{R}$, $v(x) = 1/(x - r_{hc})^{12} - 1/(x - r_{hc})^6$ if $x > r_{hc}$ and $v(x) = \infty$ otherwise. Gibbs measure (on \mathbb{R}^{N-1}_+)in constant pressure ensemble:

$$\mu_{N,\beta}(A) = \frac{1}{Z_{N,\beta}} \int_{A} \exp\left(-\beta (E_N((z_1, \dots, z_{N-1})) + p \sum_{i=1}^{N-1} z_i)\right) dz_1 \dots dz_{N-1}.$$
 (2)

There exists a unique infinite volume Gibbs measure μ_{β} on $\mathbb{R}^{\mathbb{Z}}_+$, such that for all $k \in \mathbb{N}$, every bounded continuous test function $f \in C_b(\mathbb{R}^k_+)$, and all sequences i_N with $i_N \to \infty$ and $N - i_N \to \infty$ ∞ ,

$$\lim_{N \to \infty} \int_{\mathbb{R}^{N-1}_+} f(z_{i_N+1}, \dots, z_{i_N+k}) d\mu_{N,\beta}(z_1, \dots, z_{N-1}) = \int_{\mathbb{R}^{\mathbb{Z}}_+} f(z_1, \dots, z_k) d\mu_{\beta}((z_j)_{j \in \mathbb{Z}}).$$
(3)

This Gibbs measure μ_{β} is shift invariant.

Figure 1. The configuration parametrized in two different ways: it is described either by position of one particle together with a doubly infinite sequence of spacings $\{z_i\}_{i\in\mathbb{Z}}\in\mathbb{R}_+^{\mathbb{Z}}$; or it is described straightforwardly with a doubly infinite

Theorem

Suppose $\int_0^\infty e^{\theta x} G(dx) < \infty$, $\int_0^\infty e^{\omega x} G'(dx) < \infty$ for some $\theta, \omega > 0$ (distribution of the embedded renewal process has finite exponential moment). Suppose $A, B \subset \mathbb{R}$ are bounded intervals, $t^* := \inf\{t \mid A \cap T_u B = \emptyset \; \forall u > t\}$. Then there exists $\xi > 0$ such that for all $t > t^*$, $\operatorname{Cov}(N_A, N_{T_tB}) = \mathcal{O}(e^{-\xi t}).$

Exponential Decay via Renewal Theory

The chain of atoms (doubly infinite sequence of spacings) under the measure μ_{β} is a doubly infinite Markov Chain $\{Z_n\}_{n\in\mathbb{Z}}$ on \mathbb{R}_+ , with the transition kernel

$$P_{\beta}(x,dy) := \frac{1}{\Lambda_0(\beta)\phi_{\beta}(x)} K_{\beta}(x,y)\phi(y)dy,$$
(9)

where K_{β} is a suitably defined transfer operator, $\Lambda_0(\beta)$ and ϕ_{β} are its largest eigenvalue and the corresponding eigenfunction respectively. This Markov chain has its invariant probability measure as the initial measure $\rho_{\beta}(x)dx$, where $\rho_{\beta}(x) = \frac{1}{c}(\phi_{\beta}(x))^2$ [5].

This Markov chain is *Harris recurrent*: there exists a non-trivial σ -finite measure φ such that

 $Z(t) = z(t) + \int_0^t Z(t-u)G(du)$

$$\varphi(B) > 0 \Rightarrow \forall x \quad \mathbb{P}_x(\{Z_n\}_n \text{ visits } B \text{ infinitely often}) = 1.$$
 (10)

There is an *embedded renewal process* with some distribution G.

Suppose $D = [0, \zeta], 0 < \zeta < \infty, t \leq 0$, the function

$$Z(t) = \mathbb{E}_{\nu}[\#\{n : X_n \in T_{t-\zeta}D\}],\tag{11}$$

where $X_n = \sum_{i=0}^{n-1} Z_i$, satisfies the renewal equation

Gaussian Approximation

Approximating energy eq.(1) to second order gives Gaussian transition kernel, and the Markov chain $\{Z'_n\}_{n\in\mathbb{N}} = \{Z_n - a\}_{n\in\mathbb{N}}$ is a first order autoregressive process,

$$Z'_n = \alpha Z'_{n-1} + \eta_n, \tag{4}$$

where a is the distance between particles in ground state, $\alpha \in (0,1)$ is a constant and η_n are i.i.d. normal distributed noise with a fixed variance.

Lemma

For the Gaussian approximation,
$$\int_0^\infty e^{\theta x} G(dx) < \infty$$
 for some $\theta > 0$.

Sketch of Proof:

First note that

$$1 - G(u) = \mathbb{P}(\sum_{i=0}^{\tau-1} Z'_i + \tau a \ge u) \le \mathbb{P}(\sum_{i=0}^{\tau-1} Z'_i \ge \frac{u}{2}, \tau a \le \frac{u}{2}) + \mathbb{P}(\tau a \ge \frac{u}{2}).$$
(5)

Define $d(x) = -\frac{1}{\log \alpha} \log \frac{|x|}{\alpha r}$ with some r > 0, we have

$$\mathbb{P}(\tau \ge v) \le \mathbb{P}(d(Z_0) \ge v/3) + \mathbb{P}(\sum_{i=1}^{u} d(|\eta_i| + r) \ge v/3) + \mathbb{P}(\gamma \ge v/3),$$
(6)

where γ is a geometric random variable with parameter depending on r and variance of η . The

for some suitable function z. Renewal theory[1] implies

Lemma

Suppose $\int_0^\infty e^{\theta x} G(dx) < \infty$ for some $\theta > 0$. Then there exists $\epsilon > 0$ such that

$$Z(t) = \frac{|D|}{\mathbb{E}_{\rho}[Z_0]} + \mathcal{O}(e^{-\epsilon t}).$$

Switching Pictures via Palm Theory

Let $(\mathcal{N}, \mathcal{B}(\mathcal{N}))$ be the space of locally finite counting measure on \mathbb{R} , and $\mathcal{N}_0 := \{N \in \mathcal{N} \mid N(0) = 0\}$ 1}.

Simple one-to-one correspondence, Ξ between the space $(\mathcal{N}_0, \mathcal{B}(\mathcal{N}_0))$ and $(\mathbb{R}^{\mathbb{Z}}_+, \mathcal{B}(\mathbb{R}^{\mathbb{Z}}_+))$: let $\{\ldots, x_{-1}, x_0 = 0, x_1, \ldots\}$ with $x_i < x_{i+1}$ for all $i \in \mathbb{Z}$,

$$\mathcal{N}_0 \ni N = \sum_{i \in \mathbb{Z}} \delta_{x_i} \mapsto \Xi N = \{ z_{i-1} = x_i - x_{i-1} \mid i \in \mathbb{Z} \} \in \mathbb{R}_+^{\mathbb{Z}}.$$
 (14)

The point process $\Phi^0 = \Xi^{-1} = \delta_0 + \sum_{i \in \mathbb{Z} \setminus \{0\}} \delta_{X_i}$ has distribution $\mathbb{P}^0 = \mu_\beta \circ (\Phi^0)^{-1}$.

Ryll-Nardzewski and Slivnyak inversion formula [3]: There exists a unique non-null translation invariant point process Φ which has Φ^0 as its Palm distribution.

Number operator for a Borel set A: $N_A(\cdot) = \Phi(\cdot)(A)$.

For stationary point process, second factorial moment measure $M_{\Phi^{(2)}}$ can be determined using

(13)

(16)

lemma now follows by using Chernoff bounds on the first term in RHS of eq.(5) and second term in RHS of eq.(6).

Figure 2. A realization of the first order auto-regression process with some initial value Z_0 .

the reduced second moment measure $\mathcal{K}(E) = \mathbb{E}^0[\Phi^!(E)], \ \Phi^! = \Phi - \delta_0$, as [2] $M_{\Phi^{(2)}}(A \times T_t B) = \lambda \int_A \mathcal{K}(T_{t-x}B) dx.$ (15)

The result follows from the observations that $\mathbb{E}_{\rho}[Z_0] = \lambda^{-1}$ and for t > |B|,

 $\mathcal{K}(T_{t-|B|}D) = Z_{\rho}(t).$

References

[1] S. Asmussen. Applied Probability and Queues. Springer New York, New York, 2nd. edition, 2003.

[2] F. Baccelli, B. Blaszczyszyn, and M. Karray. Random Measures, Point Processes, and Stochastic Geometry. Inria, January 2020.

[3] D. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes, volume II. Springer New York, New York, 2002.

[4] D. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes, volume I. Springer New York, New York, 2002.

[5] S. Jansen, W. König, B. Schmidt, and F. Theil. Surface energy and boundary layers for a chain of atoms at low temperature. Archive for Rational Mechanics and Analysis, 239(2):915-980, December 2020.

[6] S. Meyn and R. L. Tweedie. *Markov Chains and Stochastic Stability*. Cambridge Mathematical Library. Cambridge University Press, 2 edition, 2009.

TRR 352 Mathematics of Many-Body Quantum Systems and Their Collective Phenomena

September 25, 2024