Correlation decay for particle systems on the
real line interacting via a Lennard-Jones type
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Motivation

We study one dimensional systems interacting via a Lennard-Jones type potential with hard
core, and introduce the two different setting in which correlation decay can occur: the La-
grangian picture and the Eulerian picture (see Figure 1). Notably, in the Lagrangian picture
the system can be seen as a lattice system with continuous (positive) spin. We try to establish
a connection between the two picture by developing techniques to translate the quantitative
results for Lagrangian picture to that for Eulerian picture.

Infinite Volume Gibbs Measure

Consider N particles with positions x4, ..., zy and inter-particle spacing z; = =, — z;.
The energy of the system interacting via the aforementioned potential, truncated to next-

nearest-neighbour:
N—1 N—2

En(z1,...,28-1) = Z v(2i) + Z V(2 + Zit1), (1)

1=1 1=1
where v : [0,00) = R, v(z) =1/(x — rp.)* — 1/(x — rpe)° if 2 > 7. and v(x) = co otherwise.
Gibbs measure (on RY ~1)in constant pressure ensemble:
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N—1
CXp <—5(EN((Z1> oy ZN-1)) D Z Zz)) dzy...dzN_1. (2)
1=1
There exists a unique infinite volume Gibbs measure ;.5 on RZ, such that for all £ € N, every
bounded continuous test function f € Cb(]R’j), and all sequences iy with iy — ccand N —iy —
o0,

lim f(ZiN—l—lv R Z’L'N-H{?)d:uN,ﬁ(Zla R 721\7—1) — f(zla O Z/C>d:uﬁ((zj)]€Z> (3)
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This Gibbs measure 15 is shift invariant.
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Figure 1. The configuration parametrized in two different ways: it is described
either by position of one particle together with a doubly infinite sequence of
spacings {z}icz € RZ; or it is described straightforwardly with a doubly infinite
increasing sequence of positions, {z;},cz € RZ.

Gaussian Approximation

Approximating energy eq.(1) to second order gives Gaussian transition kernel, and the Markov
chain {Z' },en = {Z, — a}.en IS a first order autoregressive process,

Z’I,”L — azvll—l T Tin, (4)

where a is the distance between particles in ground state, a € (0,1) is a constant and 7, are
.i.d. normal distributed noise with a fixed variance.

Lemma

For the Gaussian approximation, [ e**G(dz) < oo for some 6 > 0.

Sketch of Proof:

First note that

T—1 T—1
_ — ! > < I v < o > u .
1 —G(u) P(;O:ZZ+Ta_u)_P(izO:ZZ_277a_2)+]P)(Ta_2) (5)
Define d(x) = —@logg with some r > 0, we have
P(r > v) < P(d(Zy) > v/3) +IP’(Z d(|n;| +7) > v/3) +P(vy > v/3), (6)

1=1
where ~ is a geometric random variable with parameter depending on r and variance of n. The
lemma now follows by using Chernoff bounds on the first term in RHS of eq.(5) and second

term in RHS of eq.(6).
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Figure 2. A realization of the first order auto-regression process with some initial
value Z.
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Question and Answer

Suppose that for some ¢ > 0,
E|ZyZ,] — E|Z)E|Z,] = O(e™"). (7)
Under what conditions do we have that there exists some ¢’ > 0, such that for any Borel sets
A, B,
E[N4Ng] — E[NAE[Np] = O(e="4P)), (8)

where N4, Ng are number of particles in A, B respectively?

Shift operator 7;: for any measurable set B, T;B .= {y +t |y € B}.

Theorem

Suppose [, e”G(dz) < oo, [, e**G'(dx) < oo for some 0,w > 0 (distribution of the em-
bedded renewal process has finite exponential moment). Suppose A, B C R are bounded
intervals, t* .= inf{t | ANT,B = () Yu > t}. Then there exists ¢ > 0 such that for all ¢ > ¢*,
Cov(Ny, Nz.g) = O(e™).

Exponential Decay via Renewal Theory

The chain of atoms (doubly infinite sequence of spacings) under the measure 3 is a doubly

infinite Markov Chain {Z,},cz on R, with the transition kernel

Py, dy) 1= s Kol )0l 9

where K3 is a suitably defined transfer operator, Ay(3) and ¢ are its largest eigenvalue and
the corresponding eigenfunction respectively. This Markov chain has its invariant probability
measure as the initial measure ps(z)dz, where pg(z) = H(ds(z))?[5].

This Markov chain is Harris recurrent. there exists a non-trivial o-finite measure ¢ such that
o(B)>0=Vx P,{Z,}, visits B infinitely often) = 1. (10)
There is an embedded renewal process with some distribution G.
Suppose D = [0,(], 0 < ¢ < o0, t < 0, the function
Z(t) = B [#{n : X, € T,_:D}|, (11)

where X, = """ ' Z;, satisfies the renewal equation

Z(t) = z(t) + /0 Z(t —u)G(du) (12)

for some suitable function z. Renewal theory[1] implies

Lemma

Suppose [~ e”*G(dz) < oo for some 6 > 0. Then there exists e > 0 such that
D

Z(t) B Ep[ZO]

+O(e™ ). (13)

Switching Pictures via Palm Theory

Let (V, B(N)) be the space of locally finite counting measure on R, and N, := {N € N | N(0) =
1}.

Simple one-to-one correspondence, = between the space (N, B(Ay)) and (RZ, B(R%)): let
{. co, X1, Ty = O,ZCl,}Wlth x; < x;4q forall s € Z,

Ny N =Y 6, »EN={z1=a;—x_1|i € Z} €RY. (14)

V€L
The point process ¢ = Z7! = 0y + >,z 1y Ox, has distribution P! = p5 o (")

Ryll-Nardzewski and Slivnyak inversion formula [3]: There exists a unique non-null translation
invariant point process ® which has @' as its Palm distribution.

Number operator for a Borel set A: Na(-) = &(-)(A).

For stationary point process, second factorial moment measure Mg« can be determined using
the reduced second moment measure K(E) = E°[®'(E)], &' = & — 6, as [2]

Mq)(z)(A X TtB) = )\/ /C(Tt_xB>dCE. (15)
A

The result follows from the observations that E,[Z)] = A~ and for ¢ > | B

K(Ti g D) = Z,(1). (16)
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