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Landau Operator

Magnetic derivatives with magnetic �eld strength B 2 R+(
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)
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:

Landau Operator

HB = ~@2
1 + ~@2

2 self-adjoint in L2(R2):

Spectrum consists of eigenvalues at Landau Levels

�(HB) = fB;3B;5B;: : :g:
Models an electron in a plane, subject to a perpendicular magnetic �eld.

Thick sets

S � R2 is (`;�)-thick if it is

(i) measurable,

(ii) j[x1+ `)� [x2+ `)j � �`2 for all
(
x1
x2

) 2 R2.

Thick sets can be very rough.

Theorem

For all B � 0, all thick S �R2, all E �B, and all f 2 Ran�(�1;E](HB)

kf k2L2(R2) � exp
(
C(1+ `

p
E+ `2B)

)
kf k2L2(S); (1)

where C �� ln� > 0.

Strategy of proof

Magnetic Bernstein inequality For all f 2 Ran�(�1;E](HB);m � 1,

∑
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2
� (E+Bm)mkf k22 :

No normal Bernstein inequality for f . 9f 2 Ran�(�1;E](HB) with @1f 62 L2(R2).

Bernstein-type inequality for jf j2:
∑

�2f1;2gm
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: : :@�mjf j2
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1
� (E+Bm)m=2kf k22 :

With that, established theory [2] implies that jf j2 locally extends to an analytic function

and leads to the spectral inequality for jf j2 in L1, which is the one for f in L2.

Comments

Inequalities as (1) are called Spectral Inequality or Unique Continuation Principle.

Our improvements:

1.We generalize the non-magnetic B = 0 case. In this case the Theorem is known as

Logvinenko-Sereda-Kovrijkine theorem [5, 3].

2. Our estimates are explicit (and optimal) in E.

3. The relation between E, B, and ` is optimal.

4. The geometric assumption (thickness) is optimal.

Previous work required S either periodic or an arrangement of balls [1, 6].

Application: Controllability

Controlled heat equation with magnetic evolution _u+HBu = 1Sf ; in [0;T ]�R2;

u(0) = u0 2 L2(R2):

Null-controllable in time T > 0, if for all initial states u0 there is a control f 2
L2([0;T ]�S) such that u(T ) = 0.

Using the Lebeau-Robbiano method for controllability [?], the spectral inequality implies

that thickness of S is su�cient for controllability. It is essential, that the constant in (1)

goes as exp(�CpE). First result on controllability of the Landau-heat equation.

Thickness is also necessary. We have identi�ed the optimal geometric criterion.
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